MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemd Structured version   Visualization version   GIF version

Theorem efgredlemd 19614
Description: The reduced word that forms the base of the sequence in efgsval 19601 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
efgredlem.1 (πœ‘ β†’ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))))
efgredlem.2 (πœ‘ β†’ 𝐴 ∈ dom 𝑆)
efgredlem.3 (πœ‘ β†’ 𝐡 ∈ dom 𝑆)
efgredlem.4 (πœ‘ β†’ (π‘†β€˜π΄) = (π‘†β€˜π΅))
efgredlem.5 (πœ‘ β†’ Β¬ (π΄β€˜0) = (π΅β€˜0))
efgredlemb.k 𝐾 = (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)
efgredlemb.l 𝐿 = (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)
efgredlemb.p (πœ‘ β†’ 𝑃 ∈ (0...(β™―β€˜(π΄β€˜πΎ))))
efgredlemb.q (πœ‘ β†’ 𝑄 ∈ (0...(β™―β€˜(π΅β€˜πΏ))))
efgredlemb.u (πœ‘ β†’ π‘ˆ ∈ (𝐼 Γ— 2o))
efgredlemb.v (πœ‘ β†’ 𝑉 ∈ (𝐼 Γ— 2o))
efgredlemb.6 (πœ‘ β†’ (π‘†β€˜π΄) = (𝑃(π‘‡β€˜(π΄β€˜πΎ))π‘ˆ))
efgredlemb.7 (πœ‘ β†’ (π‘†β€˜π΅) = (𝑄(π‘‡β€˜(π΅β€˜πΏ))𝑉))
efgredlemb.8 (πœ‘ β†’ Β¬ (π΄β€˜πΎ) = (π΅β€˜πΏ))
efgredlemd.9 (πœ‘ β†’ 𝑃 ∈ (β„€β‰₯β€˜(𝑄 + 2)))
efgredlemd.c (πœ‘ β†’ 𝐢 ∈ dom 𝑆)
efgredlemd.sc (πœ‘ β†’ (π‘†β€˜πΆ) = (((π΅β€˜πΏ) prefix 𝑄) ++ ((π΄β€˜πΎ) substr ⟨(𝑄 + 2), (β™―β€˜(π΄β€˜πΎ))⟩)))
Assertion
Ref Expression
efgredlemd (πœ‘ β†’ (π΄β€˜0) = (π΅β€˜0))
Distinct variable groups:   π‘Ž,𝑏,𝐴   𝑦,π‘Ž,𝑧,𝑏   𝐿,π‘Ž,𝑏   𝐾,π‘Ž,𝑏   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧,𝑃   π‘š,π‘Ž,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑀,𝑏   π‘ˆ,𝑛,𝑣,𝑀,𝑦,𝑧   π‘˜,π‘Ž,𝑇,𝑏,π‘š,𝑑,π‘₯   𝑛,𝑉,𝑣,𝑀,𝑦,𝑧   𝑄,𝑛,𝑑,𝑣,𝑀,𝑦,𝑧   π‘Š,π‘Ž,𝑏   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘Ž,𝑏,π‘š,𝑑,π‘₯,𝑦,𝑧   𝐡,π‘Ž,𝑏   𝐢,π‘Ž,𝑏,π‘˜,π‘š,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝑆,π‘Ž,𝑏   𝐼,π‘Ž,𝑏,π‘š,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘Ž,𝑏,π‘š,𝑑
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛,π‘Ž,𝑏)   𝐴(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐡(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   𝑃(π‘₯,π‘˜,π‘š,π‘Ž,𝑏)   𝑄(π‘₯,π‘˜,π‘š,π‘Ž,𝑏)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   π‘ˆ(π‘₯,𝑑,π‘˜,π‘š,π‘Ž,𝑏)   𝐼(π‘˜)   𝐾(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐿(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑀(𝑦,𝑧,π‘˜)   𝑉(π‘₯,𝑑,π‘˜,π‘š,π‘Ž,𝑏)

Proof of Theorem efgredlemd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgredlemd.c . . . . . . 7 (πœ‘ β†’ 𝐢 ∈ dom 𝑆)
2 efgval.w . . . . . . . . 9 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
3 efgval.r . . . . . . . . 9 ∼ = ( ~FG β€˜πΌ)
4 efgval2.m . . . . . . . . 9 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
5 efgval2.t . . . . . . . . 9 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
6 efgred.d . . . . . . . . 9 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
7 efgred.s . . . . . . . . 9 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
82, 3, 4, 5, 6, 7efgsdm 19600 . . . . . . . 8 (𝐢 ∈ dom 𝑆 ↔ (𝐢 ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (πΆβ€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜πΆ))(πΆβ€˜π‘–) ∈ ran (π‘‡β€˜(πΆβ€˜(𝑖 βˆ’ 1)))))
98simp1bi 1145 . . . . . . 7 (𝐢 ∈ dom 𝑆 β†’ 𝐢 ∈ (Word π‘Š βˆ– {βˆ…}))
101, 9syl 17 . . . . . 6 (πœ‘ β†’ 𝐢 ∈ (Word π‘Š βˆ– {βˆ…}))
1110eldifad 3960 . . . . 5 (πœ‘ β†’ 𝐢 ∈ Word π‘Š)
12 efgredlem.2 . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ dom 𝑆)
132, 3, 4, 5, 6, 7efgsdm 19600 . . . . . . . . . . 11 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (π΄β€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜π΄))(π΄β€˜π‘–) ∈ ran (π‘‡β€˜(π΄β€˜(𝑖 βˆ’ 1)))))
1413simp1bi 1145 . . . . . . . . . 10 (𝐴 ∈ dom 𝑆 β†’ 𝐴 ∈ (Word π‘Š βˆ– {βˆ…}))
1512, 14syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ (Word π‘Š βˆ– {βˆ…}))
1615eldifad 3960 . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ Word π‘Š)
17 wrdf 14471 . . . . . . . 8 (𝐴 ∈ Word π‘Š β†’ 𝐴:(0..^(β™―β€˜π΄))βŸΆπ‘Š)
1816, 17syl 17 . . . . . . 7 (πœ‘ β†’ 𝐴:(0..^(β™―β€˜π΄))βŸΆπ‘Š)
19 fzossfz 13653 . . . . . . . . 9 (0..^((β™―β€˜π΄) βˆ’ 1)) βŠ† (0...((β™―β€˜π΄) βˆ’ 1))
20 lencl 14485 . . . . . . . . . . . 12 (𝐴 ∈ Word π‘Š β†’ (β™―β€˜π΄) ∈ β„•0)
2116, 20syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„•0)
2221nn0zd 12586 . . . . . . . . . 10 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„€)
23 fzoval 13635 . . . . . . . . . 10 ((β™―β€˜π΄) ∈ β„€ β†’ (0..^(β™―β€˜π΄)) = (0...((β™―β€˜π΄) βˆ’ 1)))
2422, 23syl 17 . . . . . . . . 9 (πœ‘ β†’ (0..^(β™―β€˜π΄)) = (0...((β™―β€˜π΄) βˆ’ 1)))
2519, 24sseqtrrid 4035 . . . . . . . 8 (πœ‘ β†’ (0..^((β™―β€˜π΄) βˆ’ 1)) βŠ† (0..^(β™―β€˜π΄)))
26 efgredlemb.k . . . . . . . . 9 𝐾 = (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)
27 efgredlem.1 . . . . . . . . . . . 12 (πœ‘ β†’ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))))
28 efgredlem.3 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐡 ∈ dom 𝑆)
29 efgredlem.4 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘†β€˜π΄) = (π‘†β€˜π΅))
30 efgredlem.5 . . . . . . . . . . . 12 (πœ‘ β†’ Β¬ (π΄β€˜0) = (π΅β€˜0))
312, 3, 4, 5, 6, 7, 27, 12, 28, 29, 30efgredlema 19610 . . . . . . . . . . 11 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•))
3231simpld 495 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•)
33 fzo0end 13726 . . . . . . . . . 10 (((β™―β€˜π΄) βˆ’ 1) ∈ β„• β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
3432, 33syl 17 . . . . . . . . 9 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
3526, 34eqeltrid 2837 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
3625, 35sseldd 3983 . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ (0..^(β™―β€˜π΄)))
3718, 36ffvelcdmd 7087 . . . . . 6 (πœ‘ β†’ (π΄β€˜πΎ) ∈ π‘Š)
3837s1cld 14555 . . . . 5 (πœ‘ β†’ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ© ∈ Word π‘Š)
39 eldifsn 4790 . . . . . . . 8 (𝐢 ∈ (Word π‘Š βˆ– {βˆ…}) ↔ (𝐢 ∈ Word π‘Š ∧ 𝐢 β‰  βˆ…))
40 lennncl 14486 . . . . . . . 8 ((𝐢 ∈ Word π‘Š ∧ 𝐢 β‰  βˆ…) β†’ (β™―β€˜πΆ) ∈ β„•)
4139, 40sylbi 216 . . . . . . 7 (𝐢 ∈ (Word π‘Š βˆ– {βˆ…}) β†’ (β™―β€˜πΆ) ∈ β„•)
4210, 41syl 17 . . . . . 6 (πœ‘ β†’ (β™―β€˜πΆ) ∈ β„•)
43 lbfzo0 13674 . . . . . 6 (0 ∈ (0..^(β™―β€˜πΆ)) ↔ (β™―β€˜πΆ) ∈ β„•)
4442, 43sylibr 233 . . . . 5 (πœ‘ β†’ 0 ∈ (0..^(β™―β€˜πΆ)))
45 ccatval1 14529 . . . . 5 ((𝐢 ∈ Word π‘Š ∧ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ© ∈ Word π‘Š ∧ 0 ∈ (0..^(β™―β€˜πΆ))) β†’ ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0) = (πΆβ€˜0))
4611, 38, 44, 45syl3anc 1371 . . . 4 (πœ‘ β†’ ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0) = (πΆβ€˜0))
472, 3, 4, 5, 6, 7efgsdm 19600 . . . . . . . . . . 11 (𝐡 ∈ dom 𝑆 ↔ (𝐡 ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (π΅β€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜π΅))(π΅β€˜π‘–) ∈ ran (π‘‡β€˜(π΅β€˜(𝑖 βˆ’ 1)))))
4847simp1bi 1145 . . . . . . . . . 10 (𝐡 ∈ dom 𝑆 β†’ 𝐡 ∈ (Word π‘Š βˆ– {βˆ…}))
4928, 48syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐡 ∈ (Word π‘Š βˆ– {βˆ…}))
5049eldifad 3960 . . . . . . . 8 (πœ‘ β†’ 𝐡 ∈ Word π‘Š)
51 wrdf 14471 . . . . . . . 8 (𝐡 ∈ Word π‘Š β†’ 𝐡:(0..^(β™―β€˜π΅))βŸΆπ‘Š)
5250, 51syl 17 . . . . . . 7 (πœ‘ β†’ 𝐡:(0..^(β™―β€˜π΅))βŸΆπ‘Š)
53 fzossfz 13653 . . . . . . . . 9 (0..^((β™―β€˜π΅) βˆ’ 1)) βŠ† (0...((β™―β€˜π΅) βˆ’ 1))
54 lencl 14485 . . . . . . . . . . . 12 (𝐡 ∈ Word π‘Š β†’ (β™―β€˜π΅) ∈ β„•0)
5550, 54syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜π΅) ∈ β„•0)
5655nn0zd 12586 . . . . . . . . . 10 (πœ‘ β†’ (β™―β€˜π΅) ∈ β„€)
57 fzoval 13635 . . . . . . . . . 10 ((β™―β€˜π΅) ∈ β„€ β†’ (0..^(β™―β€˜π΅)) = (0...((β™―β€˜π΅) βˆ’ 1)))
5856, 57syl 17 . . . . . . . . 9 (πœ‘ β†’ (0..^(β™―β€˜π΅)) = (0...((β™―β€˜π΅) βˆ’ 1)))
5953, 58sseqtrrid 4035 . . . . . . . 8 (πœ‘ β†’ (0..^((β™―β€˜π΅) βˆ’ 1)) βŠ† (0..^(β™―β€˜π΅)))
60 efgredlemb.l . . . . . . . . 9 𝐿 = (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)
6131simprd 496 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•)
62 fzo0end 13726 . . . . . . . . . 10 (((β™―β€˜π΅) βˆ’ 1) ∈ β„• β†’ (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΅) βˆ’ 1)))
6361, 62syl 17 . . . . . . . . 9 (πœ‘ β†’ (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΅) βˆ’ 1)))
6460, 63eqeltrid 2837 . . . . . . . 8 (πœ‘ β†’ 𝐿 ∈ (0..^((β™―β€˜π΅) βˆ’ 1)))
6559, 64sseldd 3983 . . . . . . 7 (πœ‘ β†’ 𝐿 ∈ (0..^(β™―β€˜π΅)))
6652, 65ffvelcdmd 7087 . . . . . 6 (πœ‘ β†’ (π΅β€˜πΏ) ∈ π‘Š)
6766s1cld 14555 . . . . 5 (πœ‘ β†’ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ© ∈ Word π‘Š)
68 ccatval1 14529 . . . . 5 ((𝐢 ∈ Word π‘Š ∧ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ© ∈ Word π‘Š ∧ 0 ∈ (0..^(β™―β€˜πΆ))) β†’ ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0) = (πΆβ€˜0))
6911, 67, 44, 68syl3anc 1371 . . . 4 (πœ‘ β†’ ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0) = (πΆβ€˜0))
7046, 69eqtr4d 2775 . . 3 (πœ‘ β†’ ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0))
71 fviss 6968 . . . . . . . . . 10 ( I β€˜Word (𝐼 Γ— 2o)) βŠ† Word (𝐼 Γ— 2o)
722, 71eqsstri 4016 . . . . . . . . 9 π‘Š βŠ† Word (𝐼 Γ— 2o)
7372, 37sselid 3980 . . . . . . . 8 (πœ‘ β†’ (π΄β€˜πΎ) ∈ Word (𝐼 Γ— 2o))
74 lencl 14485 . . . . . . . 8 ((π΄β€˜πΎ) ∈ Word (𝐼 Γ— 2o) β†’ (β™―β€˜(π΄β€˜πΎ)) ∈ β„•0)
7573, 74syl 17 . . . . . . 7 (πœ‘ β†’ (β™―β€˜(π΄β€˜πΎ)) ∈ β„•0)
7675nn0red 12535 . . . . . 6 (πœ‘ β†’ (β™―β€˜(π΄β€˜πΎ)) ∈ ℝ)
77 2rp 12981 . . . . . 6 2 ∈ ℝ+
78 ltaddrp 13013 . . . . . 6 (((β™―β€˜(π΄β€˜πΎ)) ∈ ℝ ∧ 2 ∈ ℝ+) β†’ (β™―β€˜(π΄β€˜πΎ)) < ((β™―β€˜(π΄β€˜πΎ)) + 2))
7976, 77, 78sylancl 586 . . . . 5 (πœ‘ β†’ (β™―β€˜(π΄β€˜πΎ)) < ((β™―β€˜(π΄β€˜πΎ)) + 2))
8021nn0red 12535 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜π΄) ∈ ℝ)
8180lem1d 12149 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ≀ (β™―β€˜π΄))
82 fznn 13571 . . . . . . . . . . 11 ((β™―β€˜π΄) ∈ β„€ β†’ (((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄)) ↔ (((β™―β€˜π΄) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΄) βˆ’ 1) ≀ (β™―β€˜π΄))))
8322, 82syl 17 . . . . . . . . . 10 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄)) ↔ (((β™―β€˜π΄) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΄) βˆ’ 1) ≀ (β™―β€˜π΄))))
8432, 81, 83mpbir2and 711 . . . . . . . . 9 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄)))
852, 3, 4, 5, 6, 7efgsres 19608 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄))) β†’ (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆)
8612, 84, 85syl2anc 584 . . . . . . . 8 (πœ‘ β†’ (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆)
872, 3, 4, 5, 6, 7efgsval 19601 . . . . . . . 8 ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆 β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1)))
8886, 87syl 17 . . . . . . 7 (πœ‘ β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1)))
89 fz1ssfz0 13599 . . . . . . . . . . . . . 14 (1...(β™―β€˜π΄)) βŠ† (0...(β™―β€˜π΄))
9089, 84sselid 3980 . . . . . . . . . . . . 13 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ (0...(β™―β€˜π΄)))
91 pfxres 14631 . . . . . . . . . . . . 13 ((𝐴 ∈ Word π‘Š ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ (0...(β™―β€˜π΄))) β†’ (𝐴 prefix ((β™―β€˜π΄) βˆ’ 1)) = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))
9216, 90, 91syl2anc 584 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐴 prefix ((β™―β€˜π΄) βˆ’ 1)) = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))
9392fveq2d 6895 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜(𝐴 prefix ((β™―β€˜π΄) βˆ’ 1))) = (β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))))
94 pfxlen 14635 . . . . . . . . . . . 12 ((𝐴 ∈ Word π‘Š ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ (0...(β™―β€˜π΄))) β†’ (β™―β€˜(𝐴 prefix ((β™―β€˜π΄) βˆ’ 1))) = ((β™―β€˜π΄) βˆ’ 1))
9516, 90, 94syl2anc 584 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜(𝐴 prefix ((β™―β€˜π΄) βˆ’ 1))) = ((β™―β€˜π΄) βˆ’ 1))
9693, 95eqtr3d 2774 . . . . . . . . . 10 (πœ‘ β†’ (β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = ((β™―β€˜π΄) βˆ’ 1))
9796oveq1d 7426 . . . . . . . . 9 (πœ‘ β†’ ((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1) = (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))
9897, 26eqtr4di 2790 . . . . . . . 8 (πœ‘ β†’ ((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1) = 𝐾)
9998fveq2d 6895 . . . . . . 7 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1)) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜πΎ))
10035fvresd 6911 . . . . . . 7 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜πΎ) = (π΄β€˜πΎ))
10188, 99, 1003eqtrd 2776 . . . . . 6 (πœ‘ β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π΄β€˜πΎ))
102101fveq2d 6895 . . . . 5 (πœ‘ β†’ (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) = (β™―β€˜(π΄β€˜πΎ)))
1032, 3, 4, 5, 6, 7efgsdmi 19602 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•) β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
10412, 32, 103syl2anc 584 . . . . . . 7 (πœ‘ β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
10526fveq2i 6894 . . . . . . . . 9 (π΄β€˜πΎ) = (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))
106105fveq2i 6894 . . . . . . . 8 (π‘‡β€˜(π΄β€˜πΎ)) = (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))
107106rneqi 5936 . . . . . . 7 ran (π‘‡β€˜(π΄β€˜πΎ)) = ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))
108104, 107eleqtrrdi 2844 . . . . . 6 (πœ‘ β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜πΎ)))
1092, 3, 4, 5efgtlen 19596 . . . . . 6 (((π΄β€˜πΎ) ∈ π‘Š ∧ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜πΎ))) β†’ (β™―β€˜(π‘†β€˜π΄)) = ((β™―β€˜(π΄β€˜πΎ)) + 2))
11037, 108, 109syl2anc 584 . . . . 5 (πœ‘ β†’ (β™―β€˜(π‘†β€˜π΄)) = ((β™―β€˜(π΄β€˜πΎ)) + 2))
11179, 102, 1103brtr4d 5180 . . . 4 (πœ‘ β†’ (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)))
112 efgredlemb.p . . . . . . . . 9 (πœ‘ β†’ 𝑃 ∈ (0...(β™―β€˜(π΄β€˜πΎ))))
113 efgredlemb.q . . . . . . . . 9 (πœ‘ β†’ 𝑄 ∈ (0...(β™―β€˜(π΅β€˜πΏ))))
114 efgredlemb.u . . . . . . . . 9 (πœ‘ β†’ π‘ˆ ∈ (𝐼 Γ— 2o))
115 efgredlemb.v . . . . . . . . 9 (πœ‘ β†’ 𝑉 ∈ (𝐼 Γ— 2o))
116 efgredlemb.6 . . . . . . . . 9 (πœ‘ β†’ (π‘†β€˜π΄) = (𝑃(π‘‡β€˜(π΄β€˜πΎ))π‘ˆ))
117 efgredlemb.7 . . . . . . . . 9 (πœ‘ β†’ (π‘†β€˜π΅) = (𝑄(π‘‡β€˜(π΅β€˜πΏ))𝑉))
118 efgredlemb.8 . . . . . . . . 9 (πœ‘ β†’ Β¬ (π΄β€˜πΎ) = (π΅β€˜πΏ))
119 efgredlemd.9 . . . . . . . . 9 (πœ‘ β†’ 𝑃 ∈ (β„€β‰₯β€˜(𝑄 + 2)))
120 efgredlemd.sc . . . . . . . . 9 (πœ‘ β†’ (π‘†β€˜πΆ) = (((π΅β€˜πΏ) prefix 𝑄) ++ ((π΄β€˜πΎ) substr ⟨(𝑄 + 2), (β™―β€˜(π΄β€˜πΎ))⟩)))
1212, 3, 4, 5, 6, 7, 27, 12, 28, 29, 30, 26, 60, 112, 113, 114, 115, 116, 117, 118, 119, 1, 120efgredleme 19613 . . . . . . . 8 (πœ‘ β†’ ((π΄β€˜πΎ) ∈ ran (π‘‡β€˜(π‘†β€˜πΆ)) ∧ (π΅β€˜πΏ) ∈ ran (π‘‡β€˜(π‘†β€˜πΆ))))
122121simpld 495 . . . . . . 7 (πœ‘ β†’ (π΄β€˜πΎ) ∈ ran (π‘‡β€˜(π‘†β€˜πΆ)))
1232, 3, 4, 5, 6, 7efgsp1 19607 . . . . . . 7 ((𝐢 ∈ dom 𝑆 ∧ (π΄β€˜πΎ) ∈ ran (π‘‡β€˜(π‘†β€˜πΆ))) β†’ (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) ∈ dom 𝑆)
1241, 122, 123syl2anc 584 . . . . . 6 (πœ‘ β†’ (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) ∈ dom 𝑆)
1252, 3, 4, 5, 6, 7efgsval2 19603 . . . . . 6 ((𝐢 ∈ Word π‘Š ∧ (π΄β€˜πΎ) ∈ π‘Š ∧ (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) ∈ dom 𝑆) β†’ (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)) = (π΄β€˜πΎ))
12611, 37, 124, 125syl3anc 1371 . . . . 5 (πœ‘ β†’ (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)) = (π΄β€˜πΎ))
127101, 126eqtr4d 2775 . . . 4 (πœ‘ β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)))
128 2fveq3 6896 . . . . . . . 8 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (β™―β€˜(π‘†β€˜π‘Ž)) = (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))))
129128breq1d 5158 . . . . . . 7 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ ((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) ↔ (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄))))
130 fveqeq2 6900 . . . . . . . 8 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) ↔ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘)))
131 fveq1 6890 . . . . . . . . 9 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (π‘Žβ€˜0) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0))
132131eqeq1d 2734 . . . . . . . 8 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ ((π‘Žβ€˜0) = (π‘β€˜0) ↔ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0)))
133130, 132imbi12d 344 . . . . . . 7 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0)) ↔ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0))))
134129, 133imbi12d 344 . . . . . 6 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))) ↔ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0)))))
135 fveq2 6891 . . . . . . . . 9 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) β†’ (π‘†β€˜π‘) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)))
136135eqeq2d 2743 . . . . . . . 8 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) ↔ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©))))
137 fveq1 6890 . . . . . . . . 9 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) β†’ (π‘β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0))
138137eqeq2d 2743 . . . . . . . 8 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) β†’ (((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0) ↔ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0)))
139136, 138imbi12d 344 . . . . . . 7 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) β†’ (((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0)) ↔ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0))))
140139imbi2d 340 . . . . . 6 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) β†’ (((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0))) ↔ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0)))))
141134, 140rspc2va 3623 . . . . 5 ((((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆 ∧ (𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©) ∈ dom 𝑆) ∧ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0)))) β†’ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0))))
14286, 124, 27, 141syl21anc 836 . . . 4 (πœ‘ β†’ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0))))
143111, 127, 142mp2d 49 . . 3 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΄β€˜πΎ)β€βŸ©)β€˜0))
14472, 66sselid 3980 . . . . . . . 8 (πœ‘ β†’ (π΅β€˜πΏ) ∈ Word (𝐼 Γ— 2o))
145 lencl 14485 . . . . . . . 8 ((π΅β€˜πΏ) ∈ Word (𝐼 Γ— 2o) β†’ (β™―β€˜(π΅β€˜πΏ)) ∈ β„•0)
146144, 145syl 17 . . . . . . 7 (πœ‘ β†’ (β™―β€˜(π΅β€˜πΏ)) ∈ β„•0)
147146nn0red 12535 . . . . . 6 (πœ‘ β†’ (β™―β€˜(π΅β€˜πΏ)) ∈ ℝ)
148 ltaddrp 13013 . . . . . 6 (((β™―β€˜(π΅β€˜πΏ)) ∈ ℝ ∧ 2 ∈ ℝ+) β†’ (β™―β€˜(π΅β€˜πΏ)) < ((β™―β€˜(π΅β€˜πΏ)) + 2))
149147, 77, 148sylancl 586 . . . . 5 (πœ‘ β†’ (β™―β€˜(π΅β€˜πΏ)) < ((β™―β€˜(π΅β€˜πΏ)) + 2))
15055nn0red 12535 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜π΅) ∈ ℝ)
151150lem1d 12149 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ≀ (β™―β€˜π΅))
152 fznn 13571 . . . . . . . . . . 11 ((β™―β€˜π΅) ∈ β„€ β†’ (((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅)) ↔ (((β™―β€˜π΅) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΅) βˆ’ 1) ≀ (β™―β€˜π΅))))
15356, 152syl 17 . . . . . . . . . 10 (πœ‘ β†’ (((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅)) ↔ (((β™―β€˜π΅) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΅) βˆ’ 1) ≀ (β™―β€˜π΅))))
15461, 151, 153mpbir2and 711 . . . . . . . . 9 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅)))
1552, 3, 4, 5, 6, 7efgsres 19608 . . . . . . . . 9 ((𝐡 ∈ dom 𝑆 ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅))) β†’ (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆)
15628, 154, 155syl2anc 584 . . . . . . . 8 (πœ‘ β†’ (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆)
1572, 3, 4, 5, 6, 7efgsval 19601 . . . . . . . 8 ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆 β†’ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1)))
158156, 157syl 17 . . . . . . 7 (πœ‘ β†’ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1)))
159 fz1ssfz0 13599 . . . . . . . . . . . . . 14 (1...(β™―β€˜π΅)) βŠ† (0...(β™―β€˜π΅))
160159, 154sselid 3980 . . . . . . . . . . . . 13 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ∈ (0...(β™―β€˜π΅)))
161 pfxres 14631 . . . . . . . . . . . . 13 ((𝐡 ∈ Word π‘Š ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ (0...(β™―β€˜π΅))) β†’ (𝐡 prefix ((β™―β€˜π΅) βˆ’ 1)) = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))
16250, 160, 161syl2anc 584 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐡 prefix ((β™―β€˜π΅) βˆ’ 1)) = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))
163162fveq2d 6895 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜(𝐡 prefix ((β™―β€˜π΅) βˆ’ 1))) = (β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))))
164 pfxlen 14635 . . . . . . . . . . . 12 ((𝐡 ∈ Word π‘Š ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ (0...(β™―β€˜π΅))) β†’ (β™―β€˜(𝐡 prefix ((β™―β€˜π΅) βˆ’ 1))) = ((β™―β€˜π΅) βˆ’ 1))
16550, 160, 164syl2anc 584 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜(𝐡 prefix ((β™―β€˜π΅) βˆ’ 1))) = ((β™―β€˜π΅) βˆ’ 1))
166163, 165eqtr3d 2774 . . . . . . . . . 10 (πœ‘ β†’ (β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = ((β™―β€˜π΅) βˆ’ 1))
167166oveq1d 7426 . . . . . . . . 9 (πœ‘ β†’ ((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1) = (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))
168167, 60eqtr4di 2790 . . . . . . . 8 (πœ‘ β†’ ((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1) = 𝐿)
169168fveq2d 6895 . . . . . . 7 (πœ‘ β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1)) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜πΏ))
17064fvresd 6911 . . . . . . 7 (πœ‘ β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜πΏ) = (π΅β€˜πΏ))
171158, 169, 1703eqtrd 2776 . . . . . 6 (πœ‘ β†’ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π΅β€˜πΏ))
172171fveq2d 6895 . . . . 5 (πœ‘ β†’ (β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) = (β™―β€˜(π΅β€˜πΏ)))
1732, 3, 4, 5, 6, 7efgsdmi 19602 . . . . . . . . 9 ((𝐡 ∈ dom 𝑆 ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•) β†’ (π‘†β€˜π΅) ∈ ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
17428, 61, 173syl2anc 584 . . . . . . . 8 (πœ‘ β†’ (π‘†β€˜π΅) ∈ ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
17529, 174eqeltrd 2833 . . . . . . 7 (πœ‘ β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
17660fveq2i 6894 . . . . . . . . 9 (π΅β€˜πΏ) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))
177176fveq2i 6894 . . . . . . . 8 (π‘‡β€˜(π΅β€˜πΏ)) = (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
178177rneqi 5936 . . . . . . 7 ran (π‘‡β€˜(π΅β€˜πΏ)) = ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
179175, 178eleqtrrdi 2844 . . . . . 6 (πœ‘ β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΅β€˜πΏ)))
1802, 3, 4, 5efgtlen 19596 . . . . . 6 (((π΅β€˜πΏ) ∈ π‘Š ∧ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΅β€˜πΏ))) β†’ (β™―β€˜(π‘†β€˜π΄)) = ((β™―β€˜(π΅β€˜πΏ)) + 2))
18166, 179, 180syl2anc 584 . . . . 5 (πœ‘ β†’ (β™―β€˜(π‘†β€˜π΄)) = ((β™―β€˜(π΅β€˜πΏ)) + 2))
182149, 172, 1813brtr4d 5180 . . . 4 (πœ‘ β†’ (β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)))
183121simprd 496 . . . . . . 7 (πœ‘ β†’ (π΅β€˜πΏ) ∈ ran (π‘‡β€˜(π‘†β€˜πΆ)))
1842, 3, 4, 5, 6, 7efgsp1 19607 . . . . . . 7 ((𝐢 ∈ dom 𝑆 ∧ (π΅β€˜πΏ) ∈ ran (π‘‡β€˜(π‘†β€˜πΆ))) β†’ (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) ∈ dom 𝑆)
1851, 183, 184syl2anc 584 . . . . . 6 (πœ‘ β†’ (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) ∈ dom 𝑆)
1862, 3, 4, 5, 6, 7efgsval2 19603 . . . . . 6 ((𝐢 ∈ Word π‘Š ∧ (π΅β€˜πΏ) ∈ π‘Š ∧ (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) ∈ dom 𝑆) β†’ (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)) = (π΅β€˜πΏ))
18711, 66, 185, 186syl3anc 1371 . . . . 5 (πœ‘ β†’ (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)) = (π΅β€˜πΏ))
188171, 187eqtr4d 2775 . . . 4 (πœ‘ β†’ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)))
189 2fveq3 6896 . . . . . . . 8 (π‘Ž = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (β™―β€˜(π‘†β€˜π‘Ž)) = (β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))))
190189breq1d 5158 . . . . . . 7 (π‘Ž = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ ((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) ↔ (β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄))))
191 fveqeq2 6900 . . . . . . . 8 (π‘Ž = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) ↔ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜π‘)))
192 fveq1 6890 . . . . . . . . 9 (π‘Ž = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (π‘Žβ€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0))
193192eqeq1d 2734 . . . . . . . 8 (π‘Ž = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ ((π‘Žβ€˜0) = (π‘β€˜0) ↔ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π‘β€˜0)))
194191, 193imbi12d 344 . . . . . . 7 (π‘Ž = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0)) ↔ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π‘β€˜0))))
195190, 194imbi12d 344 . . . . . 6 (π‘Ž = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))) ↔ ((β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π‘β€˜0)))))
196 fveq2 6891 . . . . . . . . 9 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) β†’ (π‘†β€˜π‘) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)))
197196eqeq2d 2743 . . . . . . . 8 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) β†’ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜π‘) ↔ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©))))
198 fveq1 6890 . . . . . . . . 9 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) β†’ (π‘β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0))
199198eqeq2d 2743 . . . . . . . 8 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) β†’ (((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π‘β€˜0) ↔ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0)))
200197, 199imbi12d 344 . . . . . . 7 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) β†’ (((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π‘β€˜0)) ↔ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0))))
201200imbi2d 340 . . . . . 6 (𝑏 = (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) β†’ (((β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π‘β€˜0))) ↔ ((β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0)))))
202195, 201rspc2va 3623 . . . . 5 ((((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆 ∧ (𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©) ∈ dom 𝑆) ∧ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0)))) β†’ ((β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0))))
203156, 185, 27, 202syl21anc 836 . . . 4 (πœ‘ β†’ ((β™―β€˜(π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = (π‘†β€˜(𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0))))
204182, 188, 203mp2d 49 . . 3 (πœ‘ β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = ((𝐢 ++ βŸ¨β€œ(π΅β€˜πΏ)β€βŸ©)β€˜0))
20570, 143, 2043eqtr4d 2782 . 2 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0))
206 lbfzo0 13674 . . . 4 (0 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)) ↔ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•)
20732, 206sylibr 233 . . 3 (πœ‘ β†’ 0 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
208207fvresd 6911 . 2 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π΄β€˜0))
209 lbfzo0 13674 . . . 4 (0 ∈ (0..^((β™―β€˜π΅) βˆ’ 1)) ↔ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•)
21061, 209sylibr 233 . . 3 (πœ‘ β†’ 0 ∈ (0..^((β™―β€˜π΅) βˆ’ 1)))
211210fvresd 6911 . 2 (πœ‘ β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π΅β€˜0))
212205, 208, 2113eqtr3d 2780 1 (πœ‘ β†’ (π΄β€˜0) = (π΅β€˜0))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432   βˆ– cdif 3945  βˆ…c0 4322  {csn 4628  βŸ¨cop 4634  βŸ¨cotp 4636  βˆͺ ciun 4997   class class class wbr 5148   ↦ cmpt 5231   I cid 5573   Γ— cxp 5674  dom cdm 5676  ran crn 5677   β†Ύ cres 5678  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  1oc1o 8461  2oc2o 8462  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11250   ≀ cle 11251   βˆ’ cmin 11446  β„•cn 12214  2c2 12269  β„•0cn0 12474  β„€cz 12560  β„€β‰₯cuz 12824  β„+crp 12976  ...cfz 13486  ..^cfzo 13629  β™―chash 14292  Word cword 14466   ++ cconcat 14522  βŸ¨β€œcs1 14547   substr csubstr 14592   prefix cpfx 14622   splice csplice 14701  βŸ¨β€œcs2 14794   ~FG cefg 19576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-fzo 13630  df-hash 14293  df-word 14467  df-concat 14523  df-s1 14548  df-substr 14593  df-pfx 14623  df-splice 14702  df-s2 14801
This theorem is referenced by:  efgredlemc  19615
  Copyright terms: Public domain W3C validator