MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlem Structured version   Visualization version   GIF version

Theorem efgredlem 19537
Description: The reduced word that forms the base of the sequence in efgsval 19521 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
efgredlem.1 (πœ‘ β†’ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))))
efgredlem.2 (πœ‘ β†’ 𝐴 ∈ dom 𝑆)
efgredlem.3 (πœ‘ β†’ 𝐡 ∈ dom 𝑆)
efgredlem.4 (πœ‘ β†’ (π‘†β€˜π΄) = (π‘†β€˜π΅))
efgredlem.5 (πœ‘ β†’ Β¬ (π΄β€˜0) = (π΅β€˜0))
Assertion
Ref Expression
efgredlem Β¬ πœ‘
Distinct variable groups:   π‘Ž,𝑏,𝐴   𝑦,π‘Ž,𝑧,𝑏   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧   π‘š,π‘Ž,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑀,𝑏   π‘˜,π‘Ž,𝑇,𝑏,π‘š,𝑑,π‘₯   π‘Š,π‘Ž,𝑏   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘Ž,𝑏,π‘š,𝑑,π‘₯,𝑦,𝑧   𝐡,π‘Ž,𝑏   𝑆,π‘Ž,𝑏   𝐼,π‘Ž,𝑏,π‘š,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘Ž,𝑏,π‘š,𝑑
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛,π‘Ž,𝑏)   𝐴(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐡(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐼(π‘˜)   𝑀(𝑦,𝑧,π‘˜)

Proof of Theorem efgredlem
Dummy variables 𝑖 𝑗 π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
2 fviss 6922 . . . . . . . . . 10 ( I β€˜Word (𝐼 Γ— 2o)) βŠ† Word (𝐼 Γ— 2o)
31, 2eqsstri 3982 . . . . . . . . 9 π‘Š βŠ† Word (𝐼 Γ— 2o)
4 efgredlem.2 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐴 ∈ dom 𝑆)
5 efgval.r . . . . . . . . . . . . . . 15 ∼ = ( ~FG β€˜πΌ)
6 efgval2.m . . . . . . . . . . . . . . 15 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
7 efgval2.t . . . . . . . . . . . . . . 15 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
8 efgred.d . . . . . . . . . . . . . . 15 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
9 efgred.s . . . . . . . . . . . . . . 15 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
101, 5, 6, 7, 8, 9efgsdm 19520 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (π΄β€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜π΄))(π΄β€˜π‘–) ∈ ran (π‘‡β€˜(π΄β€˜(𝑖 βˆ’ 1)))))
1110simp1bi 1146 . . . . . . . . . . . . 13 (𝐴 ∈ dom 𝑆 β†’ 𝐴 ∈ (Word π‘Š βˆ– {βˆ…}))
124, 11syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 ∈ (Word π‘Š βˆ– {βˆ…}))
1312eldifad 3926 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ Word π‘Š)
14 wrdf 14416 . . . . . . . . . . 11 (𝐴 ∈ Word π‘Š β†’ 𝐴:(0..^(β™―β€˜π΄))βŸΆπ‘Š)
1513, 14syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐴:(0..^(β™―β€˜π΄))βŸΆπ‘Š)
16 efgredlem.1 . . . . . . . . . . . . . . 15 (πœ‘ β†’ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))))
17 efgredlem.3 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐡 ∈ dom 𝑆)
18 efgredlem.4 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘†β€˜π΄) = (π‘†β€˜π΅))
19 efgredlem.5 . . . . . . . . . . . . . . 15 (πœ‘ β†’ Β¬ (π΄β€˜0) = (π΅β€˜0))
201, 5, 6, 7, 8, 9, 16, 4, 17, 18, 19efgredlema 19530 . . . . . . . . . . . . . 14 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•))
2120simpld 496 . . . . . . . . . . . . 13 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•)
22 nnm1nn0 12462 . . . . . . . . . . . . 13 (((β™―β€˜π΄) βˆ’ 1) ∈ β„• β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ β„•0)
2321, 22syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ β„•0)
2421nnred 12176 . . . . . . . . . . . . 13 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ ℝ)
2524lem1d 12096 . . . . . . . . . . . 12 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ≀ ((β™―β€˜π΄) βˆ’ 1))
26 eldifsni 4754 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Word π‘Š βˆ– {βˆ…}) β†’ 𝐴 β‰  βˆ…)
274, 11, 263syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐴 β‰  βˆ…)
28 wrdfin 14429 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word π‘Š β†’ 𝐴 ∈ Fin)
29 hashnncl 14275 . . . . . . . . . . . . . . 15 (𝐴 ∈ Fin β†’ ((β™―β€˜π΄) ∈ β„• ↔ 𝐴 β‰  βˆ…))
3013, 28, 293syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((β™―β€˜π΄) ∈ β„• ↔ 𝐴 β‰  βˆ…))
3127, 30mpbird 257 . . . . . . . . . . . . 13 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„•)
32 nnm1nn0 12462 . . . . . . . . . . . . 13 ((β™―β€˜π΄) ∈ β„• β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•0)
33 fznn0 13542 . . . . . . . . . . . . 13 (((β™―β€˜π΄) βˆ’ 1) ∈ β„•0 β†’ ((((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0...((β™―β€˜π΄) βˆ’ 1)) ↔ ((((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ β„•0 ∧ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ≀ ((β™―β€˜π΄) βˆ’ 1))))
3431, 32, 333syl 18 . . . . . . . . . . . 12 (πœ‘ β†’ ((((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0...((β™―β€˜π΄) βˆ’ 1)) ↔ ((((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ β„•0 ∧ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ≀ ((β™―β€˜π΄) βˆ’ 1))))
3523, 25, 34mpbir2and 712 . . . . . . . . . . 11 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0...((β™―β€˜π΄) βˆ’ 1)))
36 lencl 14430 . . . . . . . . . . . . . 14 (𝐴 ∈ Word π‘Š β†’ (β™―β€˜π΄) ∈ β„•0)
3713, 36syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„•0)
3837nn0zd 12533 . . . . . . . . . . . 12 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„€)
39 fzoval 13582 . . . . . . . . . . . 12 ((β™―β€˜π΄) ∈ β„€ β†’ (0..^(β™―β€˜π΄)) = (0...((β™―β€˜π΄) βˆ’ 1)))
4038, 39syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (0..^(β™―β€˜π΄)) = (0...((β™―β€˜π΄) βˆ’ 1)))
4135, 40eleqtrrd 2837 . . . . . . . . . 10 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^(β™―β€˜π΄)))
4215, 41ffvelcdmd 7040 . . . . . . . . 9 (πœ‘ β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) ∈ π‘Š)
433, 42sselid 3946 . . . . . . . 8 (πœ‘ β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) ∈ Word (𝐼 Γ— 2o))
44 lencl 14430 . . . . . . . 8 ((π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) ∈ Word (𝐼 Γ— 2o) β†’ (β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) ∈ β„•0)
4543, 44syl 17 . . . . . . 7 (πœ‘ β†’ (β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) ∈ β„•0)
4645nn0red 12482 . . . . . 6 (πœ‘ β†’ (β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) ∈ ℝ)
47 2rp 12928 . . . . . 6 2 ∈ ℝ+
48 ltaddrp 12960 . . . . . 6 (((β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) ∈ ℝ ∧ 2 ∈ ℝ+) β†’ (β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) < ((β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) + 2))
4946, 47, 48sylancl 587 . . . . 5 (πœ‘ β†’ (β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) < ((β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) + 2))
5037nn0red 12482 . . . . . . . . . . 11 (πœ‘ β†’ (β™―β€˜π΄) ∈ ℝ)
5150lem1d 12096 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ≀ (β™―β€˜π΄))
52 fznn 13518 . . . . . . . . . . 11 ((β™―β€˜π΄) ∈ β„€ β†’ (((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄)) ↔ (((β™―β€˜π΄) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΄) βˆ’ 1) ≀ (β™―β€˜π΄))))
5338, 52syl 17 . . . . . . . . . 10 (πœ‘ β†’ (((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄)) ↔ (((β™―β€˜π΄) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΄) βˆ’ 1) ≀ (β™―β€˜π΄))))
5421, 51, 53mpbir2and 712 . . . . . . . . 9 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄)))
551, 5, 6, 7, 8, 9efgsres 19528 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ (1...(β™―β€˜π΄))) β†’ (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆)
564, 54, 55syl2anc 585 . . . . . . . 8 (πœ‘ β†’ (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆)
571, 5, 6, 7, 8, 9efgsval 19521 . . . . . . . 8 ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆 β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1)))
5856, 57syl 17 . . . . . . 7 (πœ‘ β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1)))
59 fz1ssfz0 13546 . . . . . . . . . . . 12 (1...(β™―β€˜π΄)) βŠ† (0...(β™―β€˜π΄))
6059, 54sselid 3946 . . . . . . . . . . 11 (πœ‘ β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ (0...(β™―β€˜π΄)))
61 pfxres 14576 . . . . . . . . . . 11 ((𝐴 ∈ Word π‘Š ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ (0...(β™―β€˜π΄))) β†’ (𝐴 prefix ((β™―β€˜π΄) βˆ’ 1)) = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))
6213, 60, 61syl2anc 585 . . . . . . . . . 10 (πœ‘ β†’ (𝐴 prefix ((β™―β€˜π΄) βˆ’ 1)) = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))
6362fveq2d 6850 . . . . . . . . 9 (πœ‘ β†’ (β™―β€˜(𝐴 prefix ((β™―β€˜π΄) βˆ’ 1))) = (β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))))
64 pfxlen 14580 . . . . . . . . . 10 ((𝐴 ∈ Word π‘Š ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ (0...(β™―β€˜π΄))) β†’ (β™―β€˜(𝐴 prefix ((β™―β€˜π΄) βˆ’ 1))) = ((β™―β€˜π΄) βˆ’ 1))
6513, 60, 64syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ (β™―β€˜(𝐴 prefix ((β™―β€˜π΄) βˆ’ 1))) = ((β™―β€˜π΄) βˆ’ 1))
6663, 65eqtr3d 2775 . . . . . . . 8 (πœ‘ β†’ (β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = ((β™―β€˜π΄) βˆ’ 1))
6766fvoveq1d 7383 . . . . . . 7 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1)) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))
68 fzo0end 13673 . . . . . . . 8 (((β™―β€˜π΄) βˆ’ 1) ∈ β„• β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
69 fvres 6865 . . . . . . . 8 ((((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΄) βˆ’ 1)) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))
7021, 68, 693syl 18 . . . . . . 7 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))
7158, 67, 703eqtrd 2777 . . . . . 6 (πœ‘ β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))
7271fveq2d 6850 . . . . 5 (πœ‘ β†’ (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) = (β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
731, 5, 6, 7, 8, 9efgsdmi 19522 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•) β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
744, 21, 73syl2anc 585 . . . . . 6 (πœ‘ β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
751, 5, 6, 7efgtlen 19516 . . . . . 6 (((π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) ∈ π‘Š ∧ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) β†’ (β™―β€˜(π‘†β€˜π΄)) = ((β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) + 2))
7642, 74, 75syl2anc 585 . . . . 5 (πœ‘ β†’ (β™―β€˜(π‘†β€˜π΄)) = ((β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) + 2))
7749, 72, 763brtr4d 5141 . . . 4 (πœ‘ β†’ (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)))
781, 5, 6, 7efgtf 19512 . . . . . . . . . . . 12 ((π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) ∈ π‘Š β†’ ((π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) = (π‘Ž ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))), 𝑏 ∈ (𝐼 Γ— 2o) ↦ ((π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) ∧ (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š))
7942, 78syl 17 . . . . . . . . . . 11 (πœ‘ β†’ ((π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) = (π‘Ž ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))), 𝑏 ∈ (𝐼 Γ— 2o) ↦ ((π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) ∧ (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š))
8079simprd 497 . . . . . . . . . 10 (πœ‘ β†’ (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š)
81 ffn 6672 . . . . . . . . . 10 ((π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š β†’ (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) Fn ((0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o)))
82 ovelrn 7534 . . . . . . . . . 10 ((π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) Fn ((0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o)) β†’ ((π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) ↔ βˆƒπ‘– ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ)))
8380, 81, 823syl 18 . . . . . . . . 9 (πœ‘ β†’ ((π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))) ↔ βˆƒπ‘– ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ)))
8474, 83mpbid 231 . . . . . . . 8 (πœ‘ β†’ βˆƒπ‘– ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ))
8520simprd 497 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•)
861, 5, 6, 7, 8, 9efgsdmi 19522 . . . . . . . . . 10 ((𝐡 ∈ dom 𝑆 ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•) β†’ (π‘†β€˜π΅) ∈ ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
8717, 85, 86syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ (π‘†β€˜π΅) ∈ ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
881, 5, 6, 7, 8, 9efgsdm 19520 . . . . . . . . . . . . . . . . 17 (𝐡 ∈ dom 𝑆 ↔ (𝐡 ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (π΅β€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜π΅))(π΅β€˜π‘–) ∈ ran (π‘‡β€˜(π΅β€˜(𝑖 βˆ’ 1)))))
8988simp1bi 1146 . . . . . . . . . . . . . . . 16 (𝐡 ∈ dom 𝑆 β†’ 𝐡 ∈ (Word π‘Š βˆ– {βˆ…}))
9017, 89syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐡 ∈ (Word π‘Š βˆ– {βˆ…}))
9190eldifad 3926 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐡 ∈ Word π‘Š)
92 wrdf 14416 . . . . . . . . . . . . . 14 (𝐡 ∈ Word π‘Š β†’ 𝐡:(0..^(β™―β€˜π΅))βŸΆπ‘Š)
9391, 92syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐡:(0..^(β™―β€˜π΅))βŸΆπ‘Š)
94 fzo0end 13673 . . . . . . . . . . . . . . 15 (((β™―β€˜π΅) βˆ’ 1) ∈ β„• β†’ (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΅) βˆ’ 1)))
95 elfzofz 13597 . . . . . . . . . . . . . . 15 ((((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΅) βˆ’ 1)) β†’ (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0...((β™―β€˜π΅) βˆ’ 1)))
9685, 94, 953syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0...((β™―β€˜π΅) βˆ’ 1)))
97 lencl 14430 . . . . . . . . . . . . . . . . 17 (𝐡 ∈ Word π‘Š β†’ (β™―β€˜π΅) ∈ β„•0)
9891, 97syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (β™―β€˜π΅) ∈ β„•0)
9998nn0zd 12533 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (β™―β€˜π΅) ∈ β„€)
100 fzoval 13582 . . . . . . . . . . . . . . 15 ((β™―β€˜π΅) ∈ β„€ β†’ (0..^(β™―β€˜π΅)) = (0...((β™―β€˜π΅) βˆ’ 1)))
10199, 100syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ (0..^(β™―β€˜π΅)) = (0...((β™―β€˜π΅) βˆ’ 1)))
10296, 101eleqtrrd 2837 . . . . . . . . . . . . 13 (πœ‘ β†’ (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0..^(β™―β€˜π΅)))
10393, 102ffvelcdmd 7040 . . . . . . . . . . . 12 (πœ‘ β†’ (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)) ∈ π‘Š)
1041, 5, 6, 7efgtf 19512 . . . . . . . . . . . 12 ((π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)) ∈ π‘Š β†’ ((π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) = (π‘Ž ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))), 𝑏 ∈ (𝐼 Γ— 2o) ↦ ((π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)) splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) ∧ (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š))
105103, 104syl 17 . . . . . . . . . . 11 (πœ‘ β†’ ((π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) = (π‘Ž ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))), 𝑏 ∈ (𝐼 Γ— 2o) ↦ ((π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)) splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) ∧ (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š))
106105simprd 497 . . . . . . . . . 10 (πœ‘ β†’ (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š)
107 ffn 6672 . . . . . . . . . 10 ((π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))):((0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š β†’ (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) Fn ((0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o)))
108 ovelrn 7534 . . . . . . . . . 10 ((π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) Fn ((0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))) Γ— (𝐼 Γ— 2o)) β†’ ((π‘†β€˜π΅) ∈ ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) ↔ βˆƒπ‘— ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))
109106, 107, 1083syl 18 . . . . . . . . 9 (πœ‘ β†’ ((π‘†β€˜π΅) ∈ ran (π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) ↔ βˆƒπ‘— ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))
11087, 109mpbid 231 . . . . . . . 8 (πœ‘ β†’ βˆƒπ‘— ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠))
111 reeanv 3216 . . . . . . . . 9 (βˆƒπ‘– ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))βˆƒπ‘— ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))(βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)) ↔ (βˆƒπ‘– ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ βˆƒπ‘— ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))
112 reeanv 3216 . . . . . . . . . . 11 (βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)βˆƒπ‘  ∈ (𝐼 Γ— 2o)((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)) ↔ (βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))
11316ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))))
1144ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ 𝐴 ∈ dom 𝑆)
11517ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ 𝐡 ∈ dom 𝑆)
11618ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ (π‘†β€˜π΄) = (π‘†β€˜π΅))
11719ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ Β¬ (π΄β€˜0) = (π΅β€˜0))
118 eqid 2733 . . . . . . . . . . . . . . 15 (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) = (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)
119 eqid 2733 . . . . . . . . . . . . . . 15 (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) = (((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)
120 simpllr 775 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))))
121120simpld 496 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ 𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))))
122120simprd 497 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))
123 simplrl 776 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ (π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)))
124123simpld 496 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ π‘Ÿ ∈ (𝐼 Γ— 2o))
125123simprd 497 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ 𝑠 ∈ (𝐼 Γ— 2o))
126 simplrr 777 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))
127126simpld 496 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ (π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ))
128126simprd 497 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠))
129 simpr 486 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) β†’ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
1301, 5, 6, 7, 8, 9, 113, 114, 115, 116, 117, 118, 119, 121, 122, 124, 125, 127, 128, 129efgredlemb 19536 . . . . . . . . . . . . . 14 Β¬ (((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
131 iman 403 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))) ↔ Β¬ (((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) ∧ Β¬ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
132130, 131mpbir 230 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ ((π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o)) ∧ ((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)))) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
133132expr 458 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) ∧ (π‘Ÿ ∈ (𝐼 Γ— 2o) ∧ 𝑠 ∈ (𝐼 Γ— 2o))) β†’ (((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
134133rexlimdvva 3202 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) β†’ (βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)βˆƒπ‘  ∈ (𝐼 Γ— 2o)((π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ (π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
135112, 134biimtrrid 242 . . . . . . . . . 10 ((πœ‘ ∧ (𝑖 ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) ∧ 𝑗 ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))))) β†’ ((βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
136135rexlimdvva 3202 . . . . . . . . 9 (πœ‘ β†’ (βˆƒπ‘– ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))βˆƒπ‘— ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))(βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
137111, 136biimtrrid 242 . . . . . . . 8 (πœ‘ β†’ ((βˆƒπ‘– ∈ (0...(β™―β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))βˆƒπ‘Ÿ ∈ (𝐼 Γ— 2o)(π‘†β€˜π΄) = (𝑖(π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))π‘Ÿ) ∧ βˆƒπ‘— ∈ (0...(β™―β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))βˆƒπ‘  ∈ (𝐼 Γ— 2o)(π‘†β€˜π΅) = (𝑗(π‘‡β€˜(π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))𝑠)) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1))))
13884, 110, 137mp2and 698 . . . . . . 7 (πœ‘ β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
139 fvres 6865 . . . . . . . 8 ((((β™―β€˜π΅) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΅) βˆ’ 1)) β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
14085, 94, 1393syl 18 . . . . . . 7 (πœ‘ β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)) = (π΅β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
141138, 70, 1403eqtr4d 2783 . . . . . 6 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
142 fz1ssfz0 13546 . . . . . . . . . . 11 (1...(β™―β€˜π΅)) βŠ† (0...(β™―β€˜π΅))
14398nn0red 12482 . . . . . . . . . . . . 13 (πœ‘ β†’ (β™―β€˜π΅) ∈ ℝ)
144143lem1d 12096 . . . . . . . . . . . 12 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ≀ (β™―β€˜π΅))
145 fznn 13518 . . . . . . . . . . . . 13 ((β™―β€˜π΅) ∈ β„€ β†’ (((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅)) ↔ (((β™―β€˜π΅) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΅) βˆ’ 1) ≀ (β™―β€˜π΅))))
14699, 145syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅)) ↔ (((β™―β€˜π΅) βˆ’ 1) ∈ β„• ∧ ((β™―β€˜π΅) βˆ’ 1) ≀ (β™―β€˜π΅))))
14785, 144, 146mpbir2and 712 . . . . . . . . . . 11 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅)))
148142, 147sselid 3946 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π΅) βˆ’ 1) ∈ (0...(β™―β€˜π΅)))
149 pfxres 14576 . . . . . . . . . 10 ((𝐡 ∈ Word π‘Š ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ (0...(β™―β€˜π΅))) β†’ (𝐡 prefix ((β™―β€˜π΅) βˆ’ 1)) = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))
15091, 148, 149syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ (𝐡 prefix ((β™―β€˜π΅) βˆ’ 1)) = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))
151150fveq2d 6850 . . . . . . . 8 (πœ‘ β†’ (β™―β€˜(𝐡 prefix ((β™―β€˜π΅) βˆ’ 1))) = (β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))))
152 pfxlen 14580 . . . . . . . . 9 ((𝐡 ∈ Word π‘Š ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ (0...(β™―β€˜π΅))) β†’ (β™―β€˜(𝐡 prefix ((β™―β€˜π΅) βˆ’ 1))) = ((β™―β€˜π΅) βˆ’ 1))
15391, 148, 152syl2anc 585 . . . . . . . 8 (πœ‘ β†’ (β™―β€˜(𝐡 prefix ((β™―β€˜π΅) βˆ’ 1))) = ((β™―β€˜π΅) βˆ’ 1))
154151, 153eqtr3d 2775 . . . . . . 7 (πœ‘ β†’ (β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = ((β™―β€˜π΅) βˆ’ 1))
155154fvoveq1d 7383 . . . . . 6 (πœ‘ β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1)) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜(((β™―β€˜π΅) βˆ’ 1) βˆ’ 1)))
156141, 67, 1553eqtr4d 2783 . . . . 5 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜((β™―β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) βˆ’ 1)) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1)))
1571, 5, 6, 7, 8, 9efgsres 19528 . . . . . . 7 ((𝐡 ∈ dom 𝑆 ∧ ((β™―β€˜π΅) βˆ’ 1) ∈ (1...(β™―β€˜π΅))) β†’ (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆)
15817, 147, 157syl2anc 585 . . . . . 6 (πœ‘ β†’ (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆)
1591, 5, 6, 7, 8, 9efgsval 19521 . . . . . 6 ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆 β†’ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1)))
160158, 159syl 17 . . . . 5 (πœ‘ β†’ (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜((β™―β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) βˆ’ 1)))
161156, 58, 1603eqtr4d 2783 . . . 4 (πœ‘ β†’ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))))
162 fveq2 6846 . . . . . . . . 9 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (π‘†β€˜π‘Ž) = (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))))
163162fveq2d 6850 . . . . . . . 8 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (β™―β€˜(π‘†β€˜π‘Ž)) = (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))))
164163breq1d 5119 . . . . . . 7 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ ((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) ↔ (β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄))))
165162eqeq1d 2735 . . . . . . . 8 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) ↔ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘)))
166 fveq1 6845 . . . . . . . . 9 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (π‘Žβ€˜0) = ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0))
167166eqeq1d 2735 . . . . . . . 8 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ ((π‘Žβ€˜0) = (π‘β€˜0) ↔ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0)))
168165, 167imbi12d 345 . . . . . . 7 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0)) ↔ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0))))
169164, 168imbi12d 345 . . . . . 6 (π‘Ž = (𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) β†’ (((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0))) ↔ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0)))))
170 fveq2 6846 . . . . . . . . 9 (𝑏 = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (π‘†β€˜π‘) = (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))))
171170eqeq2d 2744 . . . . . . . 8 (𝑏 = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) ↔ (π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))))))
172 fveq1 6845 . . . . . . . . 9 (𝑏 = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (π‘β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0))
173172eqeq2d 2744 . . . . . . . 8 (𝑏 = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0) ↔ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0)))
174171, 173imbi12d 345 . . . . . . 7 (𝑏 = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0)) ↔ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0))))
175174imbi2d 341 . . . . . 6 (𝑏 = (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) β†’ (((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜π‘) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π‘β€˜0))) ↔ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0)))))
176169, 175rspc2va 3593 . . . . 5 ((((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))) ∈ dom 𝑆 ∧ (𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1))) ∈ dom 𝑆) ∧ βˆ€π‘Ž ∈ dom π‘†βˆ€π‘ ∈ dom 𝑆((β™―β€˜(π‘†β€˜π‘Ž)) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ (π‘Žβ€˜0) = (π‘β€˜0)))) β†’ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0))))
17756, 158, 16, 176syl21anc 837 . . . 4 (πœ‘ β†’ ((β™―β€˜(π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1))))) < (β™―β€˜(π‘†β€˜π΄)) β†’ ((π‘†β€˜(𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))) = (π‘†β€˜(𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))) β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0))))
17877, 161, 177mp2d 49 . . 3 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0))
179 lbfzo0 13621 . . . . 5 (0 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)) ↔ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•)
18021, 179sylibr 233 . . . 4 (πœ‘ β†’ 0 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
181180fvresd 6866 . . 3 (πœ‘ β†’ ((𝐴 β†Ύ (0..^((β™―β€˜π΄) βˆ’ 1)))β€˜0) = (π΄β€˜0))
182 lbfzo0 13621 . . . . 5 (0 ∈ (0..^((β™―β€˜π΅) βˆ’ 1)) ↔ ((β™―β€˜π΅) βˆ’ 1) ∈ β„•)
18385, 182sylibr 233 . . . 4 (πœ‘ β†’ 0 ∈ (0..^((β™―β€˜π΅) βˆ’ 1)))
184183fvresd 6866 . . 3 (πœ‘ β†’ ((𝐡 β†Ύ (0..^((β™―β€˜π΅) βˆ’ 1)))β€˜0) = (π΅β€˜0))
185178, 181, 1843eqtr3d 2781 . 2 (πœ‘ β†’ (π΄β€˜0) = (π΅β€˜0))
186185, 19pm2.65i 193 1 Β¬ πœ‘
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3406   βˆ– cdif 3911  βˆ…c0 4286  {csn 4590  βŸ¨cop 4596  βŸ¨cotp 4598  βˆͺ ciun 4958   class class class wbr 5109   ↦ cmpt 5192   I cid 5534   Γ— cxp 5635  dom cdm 5637  ran crn 5638   β†Ύ cres 5639   Fn wfn 6495  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   ∈ cmpo 7363  1oc1o 8409  2oc2o 8410  Fincfn 8889  β„cr 11058  0cc0 11059  1c1 11060   + caddc 11062   < clt 11197   ≀ cle 11198   βˆ’ cmin 11393  β„•cn 12161  2c2 12216  β„•0cn0 12421  β„€cz 12507  β„+crp 12923  ...cfz 13433  ..^cfzo 13576  β™―chash 14239  Word cword 14411   prefix cpfx 14567   splice csplice 14646  βŸ¨β€œcs2 14739   ~FG cefg 19496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-ot 4599  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-n0 12422  df-xnn0 12494  df-z 12508  df-uz 12772  df-rp 12924  df-fz 13434  df-fzo 13577  df-hash 14240  df-word 14412  df-concat 14468  df-s1 14493  df-substr 14538  df-pfx 14568  df-splice 14647  df-s2 14746
This theorem is referenced by:  efgred  19538
  Copyright terms: Public domain W3C validator