MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlem Structured version   Visualization version   GIF version

Theorem efgredlem 18872
Description: The reduced word that forms the base of the sequence in efgsval 18856 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
Assertion
Ref Expression
efgredlem ¬ 𝜑
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgredlem
Dummy variables 𝑖 𝑗 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6740 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4000 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2o)
4 efgredlem.2 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ dom 𝑆)
5 efgval.r . . . . . . . . . . . . . . 15 = ( ~FG𝐼)
6 efgval2.m . . . . . . . . . . . . . . 15 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7 efgval2.t . . . . . . . . . . . . . . 15 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
8 efgred.d . . . . . . . . . . . . . . 15 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
9 efgred.s . . . . . . . . . . . . . . 15 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
101, 5, 6, 7, 8, 9efgsdm 18855 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
1110simp1bi 1141 . . . . . . . . . . . . 13 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
124, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (Word 𝑊 ∖ {∅}))
1312eldifad 3947 . . . . . . . . . . 11 (𝜑𝐴 ∈ Word 𝑊)
14 wrdf 13865 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝐴:(0..^(♯‘𝐴))⟶𝑊)
16 efgredlem.1 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
17 efgredlem.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ dom 𝑆)
18 efgredlem.4 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
19 efgredlem.5 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
201, 5, 6, 7, 8, 9, 16, 4, 17, 18, 19efgredlema 18865 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ∈ ℕ))
2120simpld 497 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐴) − 1) ∈ ℕ)
22 nnm1nn0 11937 . . . . . . . . . . . . 13 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ ℕ0)
2421nnred 11652 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐴) − 1) ∈ ℝ)
2524lem1d 11572 . . . . . . . . . . . 12 (𝜑 → (((♯‘𝐴) − 1) − 1) ≤ ((♯‘𝐴) − 1))
26 eldifsni 4721 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → 𝐴 ≠ ∅)
274, 11, 263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐴 ≠ ∅)
28 wrdfin 13881 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑊𝐴 ∈ Fin)
29 hashnncl 13726 . . . . . . . . . . . . . . 15 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
3013, 28, 293syl 18 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
3127, 30mpbird 259 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐴) ∈ ℕ)
32 nnm1nn0 11937 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ → ((♯‘𝐴) − 1) ∈ ℕ0)
33 fznn0 12998 . . . . . . . . . . . . 13 (((♯‘𝐴) − 1) ∈ ℕ0 → ((((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)) ↔ ((((♯‘𝐴) − 1) − 1) ∈ ℕ0 ∧ (((♯‘𝐴) − 1) − 1) ≤ ((♯‘𝐴) − 1))))
3431, 32, 333syl 18 . . . . . . . . . . . 12 (𝜑 → ((((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)) ↔ ((((♯‘𝐴) − 1) − 1) ∈ ℕ0 ∧ (((♯‘𝐴) − 1) − 1) ≤ ((♯‘𝐴) − 1))))
3523, 25, 34mpbir2and 711 . . . . . . . . . . 11 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
36 lencl 13882 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
3713, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐴) ∈ ℕ0)
3837nn0zd 12084 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℤ)
39 fzoval 13038 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4038, 39syl 17 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4135, 40eleqtrrd 2916 . . . . . . . . . 10 (𝜑 → (((♯‘𝐴) − 1) − 1) ∈ (0..^(♯‘𝐴)))
4215, 41ffvelrnd 6851 . . . . . . . . 9 (𝜑 → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊)
433, 42sseldi 3964 . . . . . . . 8 (𝜑 → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ Word (𝐼 × 2o))
44 lencl 13882 . . . . . . . 8 ((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ Word (𝐼 × 2o) → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℕ0)
4543, 44syl 17 . . . . . . 7 (𝜑 → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℕ0)
4645nn0red 11955 . . . . . 6 (𝜑 → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℝ)
47 2rp 12393 . . . . . 6 2 ∈ ℝ+
48 ltaddrp 12425 . . . . . 6 (((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ∈ ℝ ∧ 2 ∈ ℝ+) → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) < ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
4946, 47, 48sylancl 588 . . . . 5 (𝜑 → (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) < ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
5037nn0red 11955 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℝ)
5150lem1d 11572 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) − 1) ≤ (♯‘𝐴))
52 fznn 12974 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴)) ↔ (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐴) − 1) ≤ (♯‘𝐴))))
5338, 52syl 17 . . . . . . . . . 10 (𝜑 → (((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴)) ↔ (((♯‘𝐴) − 1) ∈ ℕ ∧ ((♯‘𝐴) − 1) ≤ (♯‘𝐴))))
5421, 51, 53mpbir2and 711 . . . . . . . . 9 (𝜑 → ((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴)))
551, 5, 6, 7, 8, 9efgsres 18863 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ (1...(♯‘𝐴))) → (𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆)
564, 54, 55syl2anc 586 . . . . . . . 8 (𝜑 → (𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆)
571, 5, 6, 7, 8, 9efgsval 18856 . . . . . . . 8 ((𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)))
5856, 57syl 17 . . . . . . 7 (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)))
59 fz1ssfz0 13002 . . . . . . . . . . . 12 (1...(♯‘𝐴)) ⊆ (0...(♯‘𝐴))
6059, 54sseldi 3964 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) − 1) ∈ (0...(♯‘𝐴)))
61 pfxres 14040 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑊 ∧ ((♯‘𝐴) − 1) ∈ (0...(♯‘𝐴))) → (𝐴 prefix ((♯‘𝐴) − 1)) = (𝐴 ↾ (0..^((♯‘𝐴) − 1))))
6213, 60, 61syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝐴 prefix ((♯‘𝐴) − 1)) = (𝐴 ↾ (0..^((♯‘𝐴) − 1))))
6362fveq2d 6673 . . . . . . . . 9 (𝜑 → (♯‘(𝐴 prefix ((♯‘𝐴) − 1))) = (♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))))
64 pfxlen 14044 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑊 ∧ ((♯‘𝐴) − 1) ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 prefix ((♯‘𝐴) − 1))) = ((♯‘𝐴) − 1))
6513, 60, 64syl2anc 586 . . . . . . . . 9 (𝜑 → (♯‘(𝐴 prefix ((♯‘𝐴) − 1))) = ((♯‘𝐴) − 1))
6663, 65eqtr3d 2858 . . . . . . . 8 (𝜑 → (♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = ((♯‘𝐴) − 1))
6766fvoveq1d 7177 . . . . . . 7 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)))
68 fzo0end 13128 . . . . . . . 8 (((♯‘𝐴) − 1) ∈ ℕ → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
69 fvres 6688 . . . . . . . 8 ((((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)) = (𝐴‘(((♯‘𝐴) − 1) − 1)))
7021, 68, 693syl 18 . . . . . . 7 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)) = (𝐴‘(((♯‘𝐴) − 1) − 1)))
7158, 67, 703eqtrd 2860 . . . . . 6 (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝐴‘(((♯‘𝐴) − 1) − 1)))
7271fveq2d 6673 . . . . 5 (𝜑 → (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) = (♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
731, 5, 6, 7, 8, 9efgsdmi 18857 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
744, 21, 73syl2anc 586 . . . . . 6 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
751, 5, 6, 7efgtlen 18851 . . . . . 6 (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (♯‘(𝑆𝐴)) = ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
7642, 74, 75syl2anc 586 . . . . 5 (𝜑 → (♯‘(𝑆𝐴)) = ((♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))) + 2))
7749, 72, 763brtr4d 5097 . . . 4 (𝜑 → (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)))
781, 5, 6, 7efgtf 18847 . . . . . . . . . . . 12 ((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 → ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐴‘(((♯‘𝐴) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
7942, 78syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐴‘(((♯‘𝐴) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
8079simprd 498 . . . . . . . . . 10 (𝜑 → (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊)
81 ffn 6513 . . . . . . . . . 10 ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))):((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊 → (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) Fn ((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o)))
82 ovelrn 7323 . . . . . . . . . 10 ((𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) Fn ((0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) × (𝐼 × 2o)) → ((𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ↔ ∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟)))
8380, 81, 823syl 18 . . . . . . . . 9 (𝜑 → ((𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))) ↔ ∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟)))
8474, 83mpbid 234 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟))
8520simprd 498 . . . . . . . . . 10 (𝜑 → ((♯‘𝐵) − 1) ∈ ℕ)
861, 5, 6, 7, 8, 9efgsdmi 18857 . . . . . . . . . 10 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ ℕ) → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
8717, 85, 86syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))))
881, 5, 6, 7, 8, 9efgsdm 18855 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
8988simp1bi 1141 . . . . . . . . . . . . . . . 16 (𝐵 ∈ dom 𝑆𝐵 ∈ (Word 𝑊 ∖ {∅}))
9017, 89syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (Word 𝑊 ∖ {∅}))
9190eldifad 3947 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ Word 𝑊)
92 wrdf 13865 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑊𝐵:(0..^(♯‘𝐵))⟶𝑊)
9391, 92syl 17 . . . . . . . . . . . . 13 (𝜑𝐵:(0..^(♯‘𝐵))⟶𝑊)
94 fzo0end 13128 . . . . . . . . . . . . . . 15 (((♯‘𝐵) − 1) ∈ ℕ → (((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)))
95 elfzofz 13052 . . . . . . . . . . . . . . 15 ((((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)) → (((♯‘𝐵) − 1) − 1) ∈ (0...((♯‘𝐵) − 1)))
9685, 94, 953syl 18 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0...((♯‘𝐵) − 1)))
97 lencl 13882 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ Word 𝑊 → (♯‘𝐵) ∈ ℕ0)
9891, 97syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝐵) ∈ ℕ0)
9998nn0zd 12084 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐵) ∈ ℤ)
100 fzoval 13038 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ ℤ → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
10199, 100syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0..^(♯‘𝐵)) = (0...((♯‘𝐵) − 1)))
10296, 101eleqtrrd 2916 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝐵) − 1) − 1) ∈ (0..^(♯‘𝐵)))
10393, 102ffvelrnd 6851 . . . . . . . . . . . 12 (𝜑 → (𝐵‘(((♯‘𝐵) − 1) − 1)) ∈ 𝑊)
1041, 5, 6, 7efgtf 18847 . . . . . . . . . . . 12 ((𝐵‘(((♯‘𝐵) − 1) − 1)) ∈ 𝑊 → ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐵‘(((♯‘𝐵) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
105103, 104syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) = (𝑎 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))), 𝑏 ∈ (𝐼 × 2o) ↦ ((𝐵‘(((♯‘𝐵) − 1) − 1)) splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊))
106105simprd 498 . . . . . . . . . 10 (𝜑 → (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊)
107 ffn 6513 . . . . . . . . . 10 ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))):((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o))⟶𝑊 → (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) Fn ((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o)))
108 ovelrn 7323 . . . . . . . . . 10 ((𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) Fn ((0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))) × (𝐼 × 2o)) → ((𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) ↔ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
109106, 107, 1083syl 18 . . . . . . . . 9 (𝜑 → ((𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1))) ↔ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
11087, 109mpbid 234 . . . . . . . 8 (𝜑 → ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠))
111 reeanv 3367 . . . . . . . . 9 (∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))(∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) ↔ (∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
112 reeanv 3367 . . . . . . . . . . 11 (∃𝑟 ∈ (𝐼 × 2o)∃𝑠 ∈ (𝐼 × 2o)((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) ↔ (∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
11316ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
1144ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝐴 ∈ dom 𝑆)
11517ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝐵 ∈ dom 𝑆)
11618ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑆𝐴) = (𝑆𝐵))
11719ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ¬ (𝐴‘0) = (𝐵‘0))
118 eqid 2821 . . . . . . . . . . . . . . 15 (((♯‘𝐴) − 1) − 1) = (((♯‘𝐴) − 1) − 1)
119 eqid 2821 . . . . . . . . . . . . . . 15 (((♯‘𝐵) − 1) − 1) = (((♯‘𝐵) − 1) − 1)
120 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))))
121120simpld 497 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))))
122120simprd 498 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))
123 simplrl 775 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)))
124123simpld 497 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑟 ∈ (𝐼 × 2o))
125123simprd 498 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → 𝑠 ∈ (𝐼 × 2o))
126 simplrr 776 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))
127126simpld 497 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟))
128126simprd 498 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠))
129 simpr 487 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) → ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
1301, 5, 6, 7, 8, 9, 113, 114, 115, 116, 117, 118, 119, 121, 122, 124, 125, 127, 128, 129efgredlemb 18871 . . . . . . . . . . . . . 14 ¬ (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
131 iman 404 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))) ↔ ¬ (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) ∧ ¬ (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
132130, 131mpbir 233 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ ((𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o)) ∧ ((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)))) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
133132expr 459 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) ∧ (𝑟 ∈ (𝐼 × 2o) ∧ 𝑠 ∈ (𝐼 × 2o))) → (((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
134133rexlimdvva 3294 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) → (∃𝑟 ∈ (𝐼 × 2o)∃𝑠 ∈ (𝐼 × 2o)((𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ (𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
135112, 134syl5bir 245 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) ∧ 𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1)))))) → ((∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
136135rexlimdvva 3294 . . . . . . . . 9 (𝜑 → (∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))(∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
137111, 136syl5bir 245 . . . . . . . 8 (𝜑 → ((∃𝑖 ∈ (0...(♯‘(𝐴‘(((♯‘𝐴) − 1) − 1))))∃𝑟 ∈ (𝐼 × 2o)(𝑆𝐴) = (𝑖(𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))𝑟) ∧ ∃𝑗 ∈ (0...(♯‘(𝐵‘(((♯‘𝐵) − 1) − 1))))∃𝑠 ∈ (𝐼 × 2o)(𝑆𝐵) = (𝑗(𝑇‘(𝐵‘(((♯‘𝐵) − 1) − 1)))𝑠)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1))))
13884, 110, 137mp2and 697 . . . . . . 7 (𝜑 → (𝐴‘(((♯‘𝐴) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
139 fvres 6688 . . . . . . . 8 ((((♯‘𝐵) − 1) − 1) ∈ (0..^((♯‘𝐵) − 1)) → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
14085, 94, 1393syl 18 . . . . . . 7 (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)) = (𝐵‘(((♯‘𝐵) − 1) − 1)))
141138, 70, 1403eqtr4d 2866 . . . . . 6 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘(((♯‘𝐴) − 1) − 1)) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)))
142 fz1ssfz0 13002 . . . . . . . . . . 11 (1...(♯‘𝐵)) ⊆ (0...(♯‘𝐵))
14398nn0red 11955 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐵) ∈ ℝ)
144143lem1d 11572 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐵) − 1) ≤ (♯‘𝐵))
145 fznn 12974 . . . . . . . . . . . . 13 ((♯‘𝐵) ∈ ℤ → (((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵)) ↔ (((♯‘𝐵) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ≤ (♯‘𝐵))))
14699, 145syl 17 . . . . . . . . . . . 12 (𝜑 → (((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵)) ↔ (((♯‘𝐵) − 1) ∈ ℕ ∧ ((♯‘𝐵) − 1) ≤ (♯‘𝐵))))
14785, 144, 146mpbir2and 711 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵)))
148142, 147sseldi 3964 . . . . . . . . . 10 (𝜑 → ((♯‘𝐵) − 1) ∈ (0...(♯‘𝐵)))
149 pfxres 14040 . . . . . . . . . 10 ((𝐵 ∈ Word 𝑊 ∧ ((♯‘𝐵) − 1) ∈ (0...(♯‘𝐵))) → (𝐵 prefix ((♯‘𝐵) − 1)) = (𝐵 ↾ (0..^((♯‘𝐵) − 1))))
15091, 148, 149syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐵 prefix ((♯‘𝐵) − 1)) = (𝐵 ↾ (0..^((♯‘𝐵) − 1))))
151150fveq2d 6673 . . . . . . . 8 (𝜑 → (♯‘(𝐵 prefix ((♯‘𝐵) − 1))) = (♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))))
152 pfxlen 14044 . . . . . . . . 9 ((𝐵 ∈ Word 𝑊 ∧ ((♯‘𝐵) − 1) ∈ (0...(♯‘𝐵))) → (♯‘(𝐵 prefix ((♯‘𝐵) − 1))) = ((♯‘𝐵) − 1))
15391, 148, 152syl2anc 586 . . . . . . . 8 (𝜑 → (♯‘(𝐵 prefix ((♯‘𝐵) − 1))) = ((♯‘𝐵) − 1))
154151, 153eqtr3d 2858 . . . . . . 7 (𝜑 → (♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = ((♯‘𝐵) − 1))
155154fvoveq1d 7177 . . . . . 6 (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘(((♯‘𝐵) − 1) − 1)))
156141, 67, 1553eqtr4d 2866 . . . . 5 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘((♯‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) − 1)) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)))
1571, 5, 6, 7, 8, 9efgsres 18863 . . . . . . 7 ((𝐵 ∈ dom 𝑆 ∧ ((♯‘𝐵) − 1) ∈ (1...(♯‘𝐵))) → (𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆)
15817, 147, 157syl2anc 586 . . . . . 6 (𝜑 → (𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆)
1591, 5, 6, 7, 8, 9efgsval 18856 . . . . . 6 ((𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆 → (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)))
160158, 159syl 17 . . . . 5 (𝜑 → (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘((♯‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) − 1)))
161156, 58, 1603eqtr4d 2866 . . . 4 (𝜑 → (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))))
162 fveq2 6669 . . . . . . . . 9 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (𝑆𝑎) = (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))))
163162fveq2d 6673 . . . . . . . 8 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (♯‘(𝑆𝑎)) = (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))))
164163breq1d 5075 . . . . . . 7 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) ↔ (♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴))))
165162eqeq1d 2823 . . . . . . . 8 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((𝑆𝑎) = (𝑆𝑏) ↔ (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏)))
166 fveq1 6668 . . . . . . . . 9 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (𝑎‘0) = ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0))
167166eqeq1d 2823 . . . . . . . 8 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → ((𝑎‘0) = (𝑏‘0) ↔ ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)))
168165, 167imbi12d 347 . . . . . . 7 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0))))
169164, 168imbi12d 347 . . . . . 6 (𝑎 = (𝐴 ↾ (0..^((♯‘𝐴) − 1))) → (((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)))))
170 fveq2 6669 . . . . . . . . 9 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (𝑆𝑏) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))))
171170eqeq2d 2832 . . . . . . . 8 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) ↔ (𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1))))))
172 fveq1 6668 . . . . . . . . 9 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (𝑏‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))
173172eqeq2d 2832 . . . . . . . 8 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0) ↔ ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0)))
174171, 173imbi12d 347 . . . . . . 7 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0)) ↔ ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))))
175174imbi2d 343 . . . . . 6 (𝑏 = (𝐵 ↾ (0..^((♯‘𝐵) − 1))) → (((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆𝑏) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0)))))
176169, 175rspc2va 3633 . . . . 5 ((((𝐴 ↾ (0..^((♯‘𝐴) − 1))) ∈ dom 𝑆 ∧ (𝐵 ↾ (0..^((♯‘𝐵) − 1))) ∈ dom 𝑆) ∧ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))) → ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))))
17756, 158, 16, 176syl21anc 835 . . . 4 (𝜑 → ((♯‘(𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1))))) < (♯‘(𝑆𝐴)) → ((𝑆‘(𝐴 ↾ (0..^((♯‘𝐴) − 1)))) = (𝑆‘(𝐵 ↾ (0..^((♯‘𝐵) − 1)))) → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))))
17877, 161, 177mp2d 49 . . 3 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0))
179 lbfzo0 13076 . . . . 5 (0 ∈ (0..^((♯‘𝐴) − 1)) ↔ ((♯‘𝐴) − 1) ∈ ℕ)
18021, 179sylibr 236 . . . 4 (𝜑 → 0 ∈ (0..^((♯‘𝐴) − 1)))
181180fvresd 6689 . . 3 (𝜑 → ((𝐴 ↾ (0..^((♯‘𝐴) − 1)))‘0) = (𝐴‘0))
182 lbfzo0 13076 . . . . 5 (0 ∈ (0..^((♯‘𝐵) − 1)) ↔ ((♯‘𝐵) − 1) ∈ ℕ)
18385, 182sylibr 236 . . . 4 (𝜑 → 0 ∈ (0..^((♯‘𝐵) − 1)))
184183fvresd 6689 . . 3 (𝜑 → ((𝐵 ↾ (0..^((♯‘𝐵) − 1)))‘0) = (𝐵‘0))
185178, 181, 1843eqtr3d 2864 . 2 (𝜑 → (𝐴‘0) = (𝐵‘0))
186185, 19pm2.65i 196 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  cdif 3932  c0 4290  {csn 4566  cop 4572  cotp 4574   ciun 4918   class class class wbr 5065  cmpt 5145   I cid 5458   × cxp 5552  dom cdm 5554  ran crn 5555  cres 5556   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  1oc1o 8094  2oc2o 8095  Fincfn 8508  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869  cn 11637  2c2 11691  0cn0 11896  cz 11980  +crp 12388  ...cfz 12891  ..^cfzo 13032  chash 13689  Word cword 13860   prefix cpfx 14031   splice csplice 14110  ⟨“cs2 14202   ~FG cefg 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-concat 13922  df-s1 13949  df-substr 14002  df-pfx 14032  df-splice 14111  df-s2 14209
This theorem is referenced by:  efgred  18873
  Copyright terms: Public domain W3C validator