Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelsiga Structured version   Visualization version   GIF version

Theorem unelsiga 32773
Description: A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016.)
Assertion
Ref Expression
unelsiga ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)

Proof of Theorem unelsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4887 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1131 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 isrnsigau 32766 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43simprd 497 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
54simp3d 1145 . . . 4 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
653ad2ant1 1134 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
7 prct 31673 . . . 4 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
873adant1 1131 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
9 prelpwi 5409 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
10 breq1 5113 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → (𝑥 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
11 unieq 4881 . . . . . . . 8 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
1211eleq1d 2823 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
1310, 12imbi12d 345 . . . . . 6 (𝑥 = {𝐴, 𝐵} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
1413rspcv 3580 . . . . 5 ({𝐴, 𝐵} ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
159, 14syl 17 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
16153adant1 1131 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
176, 8, 16mp2d 49 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
182, 17eqeltrrd 2839 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  cdif 3912  cun 3913  wss 3915  𝒫 cpw 4565  {cpr 4593   cuni 4870   class class class wbr 5110  ran crn 5639  ωcom 7807  cdom 8888  sigAlgebracsiga 32747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-oi 9453  df-dju 9844  df-card 9882  df-siga 32748
This theorem is referenced by:  measun  32850  aean  32883  sibfof  32980
  Copyright terms: Public domain W3C validator