Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelsiga Structured version   Visualization version   GIF version

Theorem unelsiga 34101
Description: A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016.)
Assertion
Ref Expression
unelsiga ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)

Proof of Theorem unelsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4874 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 isrnsigau 34094 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43simprd 495 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
54simp3d 1144 . . . 4 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
653ad2ant1 1133 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
7 prct 32657 . . . 4 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
873adant1 1130 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
9 prelpwi 5390 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
10 breq1 5095 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → (𝑥 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
11 unieq 4869 . . . . . . . 8 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
1211eleq1d 2813 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
1310, 12imbi12d 344 . . . . . 6 (𝑥 = {𝐴, 𝐵} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
1413rspcv 3573 . . . . 5 ({𝐴, 𝐵} ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
159, 14syl 17 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
16153adant1 1130 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
176, 8, 16mp2d 49 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
182, 17eqeltrrd 2829 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3900  cun 3901  wss 3903  𝒫 cpw 4551  {cpr 4579   cuni 4858   class class class wbr 5092  ran crn 5620  ωcom 7799  cdom 8870  sigAlgebracsiga 34075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-dju 9797  df-card 9835  df-siga 34076
This theorem is referenced by:  measun  34178  aean  34211  sibfof  34308
  Copyright terms: Public domain W3C validator