Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelsiga Structured version   Visualization version   GIF version

Theorem unelsiga 34117
Description: A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016.)
Assertion
Ref Expression
unelsiga ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)

Proof of Theorem unelsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4883 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 isrnsigau 34110 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43simprd 495 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
54simp3d 1144 . . . 4 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
653ad2ant1 1133 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
7 prct 32688 . . . 4 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
873adant1 1130 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
9 prelpwi 5402 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
10 breq1 5105 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → (𝑥 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
11 unieq 4878 . . . . . . . 8 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
1211eleq1d 2813 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
1310, 12imbi12d 344 . . . . . 6 (𝑥 = {𝐴, 𝐵} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
1413rspcv 3581 . . . . 5 ({𝐴, 𝐵} ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
159, 14syl 17 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
16153adant1 1130 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
176, 8, 16mp2d 49 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
182, 17eqeltrrd 2829 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3908  cun 3909  wss 3911  𝒫 cpw 4559  {cpr 4587   cuni 4867   class class class wbr 5102  ran crn 5632  ωcom 7822  cdom 8893  sigAlgebracsiga 34091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-oi 9439  df-dju 9830  df-card 9868  df-siga 34092
This theorem is referenced by:  measun  34194  aean  34227  sibfof  34324
  Copyright terms: Public domain W3C validator