Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelsiga Structured version   Visualization version   GIF version

Theorem unelsiga 34135
Description: A sigma-algebra is closed under pairwise unions. (Contributed by Thierry Arnoux, 13-Dec-2016.)
Assertion
Ref Expression
unelsiga ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)

Proof of Theorem unelsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4923 . . 3 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1131 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
3 isrnsigau 34128 . . . . . 6 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
43simprd 495 . . . . 5 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
54simp3d 1145 . . . 4 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
653ad2ant1 1134 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
7 prct 32726 . . . 4 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
873adant1 1131 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
9 prelpwi 5452 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
10 breq1 5146 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → (𝑥 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
11 unieq 4918 . . . . . . . 8 (𝑥 = {𝐴, 𝐵} → 𝑥 = {𝐴, 𝐵})
1211eleq1d 2826 . . . . . . 7 (𝑥 = {𝐴, 𝐵} → ( 𝑥𝑆 {𝐴, 𝐵} ∈ 𝑆))
1310, 12imbi12d 344 . . . . . 6 (𝑥 = {𝐴, 𝐵} → ((𝑥 ≼ ω → 𝑥𝑆) ↔ ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
1413rspcv 3618 . . . . 5 ({𝐴, 𝐵} ∈ 𝒫 𝑆 → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
159, 14syl 17 . . . 4 ((𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
16153adant1 1131 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ({𝐴, 𝐵} ≼ ω → {𝐴, 𝐵} ∈ 𝑆)))
176, 8, 16mp2d 49 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝑆)
182, 17eqeltrrd 2842 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cdif 3948  cun 3949  wss 3951  𝒫 cpw 4600  {cpr 4628   cuni 4907   class class class wbr 5143  ran crn 5686  ωcom 7887  cdom 8983  sigAlgebracsiga 34109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-dju 9941  df-card 9979  df-siga 34110
This theorem is referenced by:  measun  34212  aean  34245  sibfof  34342
  Copyright terms: Public domain W3C validator