| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiexdiv | Structured version Visualization version GIF version | ||
| Description: In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| archiexdiv.b | ⊢ 𝐵 = (Base‘𝑊) |
| archiexdiv.0 | ⊢ 0 = (0g‘𝑊) |
| archiexdiv.i | ⊢ < = (lt‘𝑊) |
| archiexdiv.x | ⊢ · = (.g‘𝑊) |
| Ref | Expression |
|---|---|
| archiexdiv | ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archiexdiv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | archiexdiv.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 3 | archiexdiv.i | . . . . 5 ⊢ < = (lt‘𝑊) | |
| 4 | archiexdiv.x | . . . . 5 ⊢ · = (.g‘𝑊) | |
| 5 | 1, 2, 3, 4 | isarchi3 33185 | . . . 4 ⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
| 6 | 5 | biimpa 476 | . . 3 ⊢ ((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
| 8 | simp3 1138 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → 0 < 𝑋) | |
| 9 | breq2 5123 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) | |
| 10 | oveq2 7413 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑛 · 𝑥) = (𝑛 · 𝑋)) | |
| 11 | 10 | breq2d 5131 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 < (𝑛 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑋))) |
| 12 | 11 | rexbidv 3164 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋))) |
| 13 | 9, 12 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)))) |
| 14 | breq1 5122 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 < (𝑛 · 𝑋) ↔ 𝑌 < (𝑛 · 𝑋))) | |
| 15 | 14 | rexbidv 3164 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋) ↔ ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋))) |
| 16 | 15 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 17 | 13, 16 | rspc2v 3612 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 18 | 17 | 3ad2ant2 1134 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 19 | 7, 8, 18 | mp2d 49 | 1 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℕcn 12240 Basecbs 17228 0gc0g 17453 ltcplt 18320 .gcmg 19050 oGrpcogrp 33066 Archicarchi 33175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-seq 14020 df-0g 17455 df-proset 18306 df-poset 18325 df-plt 18340 df-toset 18427 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-mulg 19051 df-omnd 33067 df-ogrp 33068 df-inftm 33176 df-archi 33177 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |