| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiexdiv | Structured version Visualization version GIF version | ||
| Description: In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| archiexdiv.b | ⊢ 𝐵 = (Base‘𝑊) |
| archiexdiv.0 | ⊢ 0 = (0g‘𝑊) |
| archiexdiv.i | ⊢ < = (lt‘𝑊) |
| archiexdiv.x | ⊢ · = (.g‘𝑊) |
| Ref | Expression |
|---|---|
| archiexdiv | ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archiexdiv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | archiexdiv.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 3 | archiexdiv.i | . . . . 5 ⊢ < = (lt‘𝑊) | |
| 4 | archiexdiv.x | . . . . 5 ⊢ · = (.g‘𝑊) | |
| 5 | 1, 2, 3, 4 | isarchi3 33156 | . . . 4 ⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
| 6 | 5 | biimpa 476 | . . 3 ⊢ ((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
| 8 | simp3 1138 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → 0 < 𝑋) | |
| 9 | breq2 5106 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) | |
| 10 | oveq2 7377 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑛 · 𝑥) = (𝑛 · 𝑋)) | |
| 11 | 10 | breq2d 5114 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 < (𝑛 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑋))) |
| 12 | 11 | rexbidv 3157 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋))) |
| 13 | 9, 12 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)))) |
| 14 | breq1 5105 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 < (𝑛 · 𝑋) ↔ 𝑌 < (𝑛 · 𝑋))) | |
| 15 | 14 | rexbidv 3157 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋) ↔ ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋))) |
| 16 | 15 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 17 | 13, 16 | rspc2v 3596 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 18 | 17 | 3ad2ant2 1134 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 19 | 7, 8, 18 | mp2d 49 | 1 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℕcn 12162 Basecbs 17155 0gc0g 17378 ltcplt 18249 .gcmg 18981 oGrpcogrp 20034 Archicarchi 33146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-0g 17380 df-proset 18235 df-poset 18254 df-plt 18269 df-toset 18356 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-mulg 18982 df-omnd 20035 df-ogrp 20036 df-inftm 33147 df-archi 33148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |