| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiexdiv | Structured version Visualization version GIF version | ||
| Description: In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| archiexdiv.b | ⊢ 𝐵 = (Base‘𝑊) |
| archiexdiv.0 | ⊢ 0 = (0g‘𝑊) |
| archiexdiv.i | ⊢ < = (lt‘𝑊) |
| archiexdiv.x | ⊢ · = (.g‘𝑊) |
| Ref | Expression |
|---|---|
| archiexdiv | ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archiexdiv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | archiexdiv.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 3 | archiexdiv.i | . . . . 5 ⊢ < = (lt‘𝑊) | |
| 4 | archiexdiv.x | . . . . 5 ⊢ · = (.g‘𝑊) | |
| 5 | 1, 2, 3, 4 | isarchi3 33163 | . . . 4 ⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
| 6 | 5 | biimpa 476 | . . 3 ⊢ ((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
| 8 | simp3 1138 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → 0 < 𝑋) | |
| 9 | breq2 5097 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) | |
| 10 | oveq2 7360 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑛 · 𝑥) = (𝑛 · 𝑋)) | |
| 11 | 10 | breq2d 5105 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 < (𝑛 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑋))) |
| 12 | 11 | rexbidv 3157 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋))) |
| 13 | 9, 12 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)))) |
| 14 | breq1 5096 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 < (𝑛 · 𝑋) ↔ 𝑌 < (𝑛 · 𝑋))) | |
| 15 | 14 | rexbidv 3157 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋) ↔ ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋))) |
| 16 | 15 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 17 | 13, 16 | rspc2v 3584 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 18 | 17 | 3ad2ant2 1134 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
| 19 | 7, 8, 18 | mp2d 49 | 1 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℕcn 12132 Basecbs 17122 0gc0g 17345 ltcplt 18216 .gcmg 18982 oGrpcogrp 20034 Archicarchi 33153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-seq 13911 df-0g 17347 df-proset 18202 df-poset 18221 df-plt 18236 df-toset 18323 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-mulg 18983 df-omnd 20035 df-ogrp 20036 df-inftm 33154 df-archi 33155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |