Step | Hyp | Ref
| Expression |
1 | | chcoeffeq.a |
. . 3
β’ π΄ = (π Mat π
) |
2 | | chcoeffeq.b |
. . 3
β’ π΅ = (Baseβπ΄) |
3 | | chcoeffeq.p |
. . 3
β’ π = (Poly1βπ
) |
4 | | chcoeffeq.y |
. . 3
β’ π = (π Mat π) |
5 | | chcoeffeq.t |
. . 3
β’ π = (π matToPolyMat π
) |
6 | | chcoeffeq.r |
. . 3
β’ Γ =
(.rβπ) |
7 | | chcoeffeq.s |
. . 3
β’ β =
(-gβπ) |
8 | | chcoeffeq.0 |
. . 3
β’ 0 =
(0gβπ) |
9 | | chcoeffeq.g |
. . 3
β’ πΊ = (π β β0 β¦ if(π = 0, ( 0 β ((πβπ) Γ (πβ(πβ0)))), if(π = (π + 1), (πβ(πβπ )), if((π + 1) < π, 0 , ((πβ(πβ(π β 1))) β ((πβπ) Γ (πβ(πβπ)))))))) |
10 | | eqid 2732 |
. . 3
β’ (π ConstPolyMat π
) = (π ConstPolyMat π
) |
11 | | eqid 2732 |
. . 3
β’ (
Β·π βπ) = ( Β·π
βπ) |
12 | | eqid 2732 |
. . 3
β’
(1rβπ) = (1rβπ) |
13 | | eqid 2732 |
. . 3
β’
(var1βπ
) = (var1βπ
) |
14 | | eqid 2732 |
. . 3
β’
(((var1βπ
)( Β·π
βπ)(1rβπ)) β (πβπ)) = (((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) |
15 | | eqid 2732 |
. . 3
β’ (π maAdju π) = (π maAdju π) |
16 | | chcoeffeq.w |
. . 3
β’ π = (Baseβπ) |
17 | | eqid 2732 |
. . 3
β’
(Poly1βπ΄) = (Poly1βπ΄) |
18 | | eqid 2732 |
. . 3
β’
(var1βπ΄) = (var1βπ΄) |
19 | | eqid 2732 |
. . 3
β’ (
Β·π β(Poly1βπ΄)) = (
Β·π β(Poly1βπ΄)) |
20 | | eqid 2732 |
. . 3
β’
(.gβ(mulGrpβ(Poly1βπ΄))) =
(.gβ(mulGrpβ(Poly1βπ΄))) |
21 | | chcoeffeq.u |
. . 3
β’ π = (π cPolyMatToMat π
) |
22 | | eqid 2732 |
. . 3
β’ (π pMatToMatPoly π
) = (π pMatToMatPoly π
) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | cpmadumatpoly 22384 |
. 2
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β βπ β β βπ β (π΅ βm (0...π ))((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) |
24 | | eqid 2732 |
. . . . . . 7
β’
(.gβ(mulGrpβπ)) =
(.gβ(mulGrpβπ)) |
25 | | eqid 2732 |
. . . . . . 7
β’
(algScβπ) =
(algScβπ) |
26 | | chcoeffeq.c |
. . . . . . 7
β’ πΆ = (π CharPlyMat π
) |
27 | | chcoeffeq.k |
. . . . . . 7
β’ πΎ = (πΆβπ) |
28 | | eqid 2732 |
. . . . . . 7
β’ (πΎ(
Β·π βπ)(1rβπ)) = (πΎ( Β·π
βπ)(1rβπ)) |
29 | | chcoeffeq.1 |
. . . . . . 7
β’ 1 =
(1rβπ΄) |
30 | | chcoeffeq.m |
. . . . . . 7
β’ β = (
Β·π βπ΄) |
31 | 1, 2, 3, 4, 13, 24, 11, 12, 25, 26, 27, 28, 29, 30, 5, 16, 17, 18, 19, 20, 22 | cpmidpmat 22374 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((π pMatToMatPoly π
)β(πΎ( Β·π
βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((((coe1βπΎ)βπ) β 1 )(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) |
32 | | eqid 2732 |
. . . . . . . 8
β’ (π CharPlyMat π
) = (π CharPlyMat π
) |
33 | 1, 2, 32, 3, 4, 13, 5, 7, 11, 12, 14, 15, 6 | cpmadurid 22368 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)))) = (((π CharPlyMat π
)βπ)( Β·π
βπ)(1rβπ))) |
34 | 26 | fveq1i 6892 |
. . . . . . . . . . 11
β’ (πΆβπ) = ((π CharPlyMat π
)βπ) |
35 | 27, 34 | eqtri 2760 |
. . . . . . . . . 10
β’ πΎ = ((π CharPlyMat π
)βπ) |
36 | 35 | a1i 11 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β πΎ = ((π CharPlyMat π
)βπ)) |
37 | 36 | eqcomd 2738 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((π CharPlyMat π
)βπ) = πΎ) |
38 | 37 | oveq1d 7423 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (((π CharPlyMat π
)βπ)( Β·π
βπ)(1rβπ)) = (πΎ( Β·π
βπ)(1rβπ))) |
39 | 33, 38 | eqtrd 2772 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)))) = (πΎ( Β·π
βπ)(1rβπ))) |
40 | | fveq2 6891 |
. . . . . . . . 9
β’
(((((var1βπ
)( Β·π
βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)))) = (πΎ( Β·π
βπ)(1rβπ)) β ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((π pMatToMatPoly π
)β(πΎ( Β·π
βπ)(1rβπ)))) |
41 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β§ ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β ((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) |
42 | 41 | adantr 481 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β CRing β§
π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β§ ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β§ ((π pMatToMatPoly π
)β(πΎ(
Β·π βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β ((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) |
43 | | simpr 485 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β CRing β§
π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β§ ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β§ ((π pMatToMatPoly π
)β(πΎ(
Β·π βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β ((π pMatToMatPoly π
)β(πΎ(
Β·π βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) |
44 | 42, 43 | eqeq12d 2748 |
. . . . . . . . . . . 12
β’
(((((π β Fin
β§ π
β CRing β§
π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β§ ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β§ ((π pMatToMatPoly π
)β(πΎ(
Β·π βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β (((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((π
pMatToMatPoly π
)β(πΎ( Β·π βπ)(1rβπ))) β ((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))))) |
45 | 1, 2, 3, 4, 6, 7, 8, 5, 26, 27, 9, 16, 29, 30, 21 | chcoeffeqlem 22386 |
. . . . . . . . . . . . . 14
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β (((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))) |
46 | 45 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β§ ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β (((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))) |
47 | 46 | adantr 481 |
. . . . . . . . . . . 12
β’
(((((π β Fin
β§ π
β CRing β§
π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β§ ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β§ ((π pMatToMatPoly π
)β(πΎ(
Β·π βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β (((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))) |
48 | 44, 47 | sylbid 239 |
. . . . . . . . . . 11
β’
(((((π β Fin
β§ π
β CRing β§
π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β§ ((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β§ ((π pMatToMatPoly π
)β(πΎ(
Β·π βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄)))))) β (((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((π
pMatToMatPoly π
)β(πΎ( Β·π βπ)(1rβπ))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))) |
49 | 48 | exp31 420 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β (((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β (((π pMatToMatPoly π
)β(πΎ(
Β·π βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦
((((coe1βπΎ)βπ) β 1 )( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β (((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((π
pMatToMatPoly π
)β(πΎ( Β·π βπ)(1rβπ))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))))) |
50 | 49 | com24 95 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β (((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((π pMatToMatPoly π
)β(πΎ( Β·π
βπ)(1rβπ))) β (((π pMatToMatPoly π
)β(πΎ( Β·π
βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((((coe1βπΎ)βπ) β 1 )(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β (((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))))) |
51 | 40, 50 | syl5 34 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β β§ π β (π΅ βm (0...π )))) β (((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)))) = (πΎ( Β·π
βπ)(1rβπ)) β (((π pMatToMatPoly π
)β(πΎ( Β·π
βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((((coe1βπΎ)βπ) β 1 )(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β (((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))))) |
52 | 51 | ex 413 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((π β β β§ π β (π΅ βm (0...π ))) β (((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)))) = (πΎ( Β·π
βπ)(1rβπ)) β (((π pMatToMatPoly π
)β(πΎ( Β·π
βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((((coe1βπΎ)βπ) β 1 )(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β (((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 )))))) |
53 | 52 | com24 95 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (((π pMatToMatPoly π
)β(πΎ( Β·π
βπ)(1rβπ))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((((coe1βπΎ)βπ) β 1 )(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β (((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ)))) = (πΎ(
Β·π βπ)(1rβπ)) β ((π β β β§ π β (π΅
βm (0...π ))) β (((π pMatToMatPoly π
)β((((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))
Γ ((π maAdju π)β(((var1βπ
)( Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g (π β β0 β¦ ((πβ(πΊβπ))(
Β·π β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 )))))) |
54 | 31, 39, 53 | mp2d 49 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((π β β β§ π β (π΅ βm (0...π ))) β (((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 )))) |
55 | 54 | impl 456 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β) β§ π β (π΅ βm (0...π ))) β (((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))) |
56 | 55 | reximdva 3168 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ π β β) β (βπ β (π΅ βm (0...π ))((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β (π΅
βm (0...π ))βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))) |
57 | 56 | reximdva 3168 |
. 2
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (βπ β β βπ β (π΅ βm (0...π ))((π pMatToMatPoly π
)β((((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ)) Γ ((π maAdju π)β(((var1βπ
)(
Β·π βπ)(1rβπ)) β (πβπ))))) = ((Poly1βπ΄) Ξ£g
(π β
β0 β¦ ((πβ(πΊβπ))( Β·π
β(Poly1βπ΄))(π(.gβ(mulGrpβ(Poly1βπ΄)))(var1βπ΄))))) β βπ β β βπ β (π΅
βm (0...π ))βπ β β0 (πβ(πΊβπ))
= (((coe1βπΎ)βπ) β 1 ))) |
58 | 23, 57 | mpd 15 |
1
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β βπ β β βπ β (π΅ βm (0...π ))βπ β β0 (πβ(πΊβπ)) = (((coe1βπΎ)βπ) β 1 )) |