MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeq Structured version   Visualization version   GIF version

Theorem chcoeffeq 22806
Description: The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐡 = (Baseβ€˜π΄)
chcoeffeq.p 𝑃 = (Poly1β€˜π‘…)
chcoeffeq.y π‘Œ = (𝑁 Mat 𝑃)
chcoeffeq.r Γ— = (.rβ€˜π‘Œ)
chcoeffeq.s βˆ’ = (-gβ€˜π‘Œ)
chcoeffeq.0 0 = (0gβ€˜π‘Œ)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐢 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (πΆβ€˜π‘€)
chcoeffeq.g 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
chcoeffeq.w π‘Š = (Baseβ€˜π‘Œ)
chcoeffeq.1 1 = (1rβ€˜π΄)
chcoeffeq.m βˆ— = ( ·𝑠 β€˜π΄)
chcoeffeq.u π‘ˆ = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeq ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ βˆƒπ‘  ∈ β„• βˆƒπ‘ ∈ (𝐡 ↑m (0...𝑠))βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 ))
Distinct variable groups:   𝐴,𝑛   𝐡,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   π‘ˆ,𝑛   𝑛,π‘Œ   1 ,𝑛   βˆ— ,𝑛   𝑛,𝑏,𝑠,𝐴   𝐡,𝑏,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑛,𝑠   𝑛,π‘Š   π‘Œ,𝑏,𝑠   0 ,𝑛   Γ— ,𝑛   βˆ’ ,𝑏,𝑛,𝑠
Allowed substitution hints:   𝐢(𝑛,𝑠,𝑏)   Γ— (𝑠,𝑏)   π‘ˆ(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   βˆ— (𝑠,𝑏)   𝐾(𝑠,𝑏)   π‘Š(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chcoeffeq
StepHypRef Expression
1 chcoeffeq.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 chcoeffeq.b . . 3 𝐡 = (Baseβ€˜π΄)
3 chcoeffeq.p . . 3 𝑃 = (Poly1β€˜π‘…)
4 chcoeffeq.y . . 3 π‘Œ = (𝑁 Mat 𝑃)
5 chcoeffeq.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 chcoeffeq.r . . 3 Γ— = (.rβ€˜π‘Œ)
7 chcoeffeq.s . . 3 βˆ’ = (-gβ€˜π‘Œ)
8 chcoeffeq.0 . . 3 0 = (0gβ€˜π‘Œ)
9 chcoeffeq.g . . 3 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
10 eqid 2725 . . 3 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
11 eqid 2725 . . 3 ( ·𝑠 β€˜π‘Œ) = ( ·𝑠 β€˜π‘Œ)
12 eqid 2725 . . 3 (1rβ€˜π‘Œ) = (1rβ€˜π‘Œ)
13 eqid 2725 . . 3 (var1β€˜π‘…) = (var1β€˜π‘…)
14 eqid 2725 . . 3 (((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) = (((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))
15 eqid 2725 . . 3 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
16 chcoeffeq.w . . 3 π‘Š = (Baseβ€˜π‘Œ)
17 eqid 2725 . . 3 (Poly1β€˜π΄) = (Poly1β€˜π΄)
18 eqid 2725 . . 3 (var1β€˜π΄) = (var1β€˜π΄)
19 eqid 2725 . . 3 ( ·𝑠 β€˜(Poly1β€˜π΄)) = ( ·𝑠 β€˜(Poly1β€˜π΄))
20 eqid 2725 . . 3 (.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄))) = (.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))
21 chcoeffeq.u . . 3 π‘ˆ = (𝑁 cPolyMatToMat 𝑅)
22 eqid 2725 . . 3 (𝑁 pMatToMatPoly 𝑅) = (𝑁 pMatToMatPoly 𝑅)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22cpmadumatpoly 22803 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ βˆƒπ‘  ∈ β„• βˆƒπ‘ ∈ (𝐡 ↑m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))))
24 eqid 2725 . . . . . . 7 (.gβ€˜(mulGrpβ€˜π‘ƒ)) = (.gβ€˜(mulGrpβ€˜π‘ƒ))
25 eqid 2725 . . . . . . 7 (algScβ€˜π‘ƒ) = (algScβ€˜π‘ƒ)
26 chcoeffeq.c . . . . . . 7 𝐢 = (𝑁 CharPlyMat 𝑅)
27 chcoeffeq.k . . . . . . 7 𝐾 = (πΆβ€˜π‘€)
28 eqid 2725 . . . . . . 7 (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) = (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))
29 chcoeffeq.1 . . . . . . 7 1 = (1rβ€˜π΄)
30 chcoeffeq.m . . . . . . 7 βˆ— = ( ·𝑠 β€˜π΄)
311, 2, 3, 4, 13, 24, 11, 12, 25, 26, 27, 28, 29, 30, 5, 16, 17, 18, 19, 20, 22cpmidpmat 22793 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))))
32 eqid 2725 . . . . . . . 8 (𝑁 CharPlyMat 𝑅) = (𝑁 CharPlyMat 𝑅)
331, 2, 32, 3, 4, 13, 5, 7, 11, 12, 14, 15, 6cpmadurid 22787 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)))) = (((𝑁 CharPlyMat 𝑅)β€˜π‘€)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)))
3426fveq1i 6893 . . . . . . . . . . 11 (πΆβ€˜π‘€) = ((𝑁 CharPlyMat 𝑅)β€˜π‘€)
3527, 34eqtri 2753 . . . . . . . . . 10 𝐾 = ((𝑁 CharPlyMat 𝑅)β€˜π‘€)
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝐾 = ((𝑁 CharPlyMat 𝑅)β€˜π‘€))
3736eqcomd 2731 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((𝑁 CharPlyMat 𝑅)β€˜π‘€) = 𝐾)
3837oveq1d 7431 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (((𝑁 CharPlyMat 𝑅)β€˜π‘€)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) = (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)))
3933, 38eqtrd 2765 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)))) = (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)))
40 fveq2 6892 . . . . . . . . 9 (((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)))) = (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) β†’ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))))
41 simpr 483 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) β†’ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))))
4241adantr 479 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) β†’ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))))
43 simpr 483 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) β†’ ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))))
4442, 43eqeq12d 2741 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) ↔ ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))))
451, 2, 3, 4, 6, 7, 8, 5, 26, 27, 9, 16, 29, 30, 21chcoeffeqlem 22805 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))
4645adantr 479 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) β†’ (((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))
4746adantr 479 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) β†’ (((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))
4844, 47sylbid 239 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄)))))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))
4948exp31 418 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))))
5049com24 95 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))))
5140, 50syl5 34 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)))) = (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))))
5251ex 411 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ (((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)))) = (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 ))))))
5352com24 95 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜(𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ (((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)))) = (𝐾( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) β†’ ((𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 ))))))
5431, 39, 53mp2d 49 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 ))))
5554impl 454 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑠 ∈ β„•) ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ (((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))
5655reximdva 3158 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑠 ∈ β„•) β†’ (βˆƒπ‘ ∈ (𝐡 ↑m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆƒπ‘ ∈ (𝐡 ↑m (0...𝑠))βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))
5756reximdva 3158 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (βˆƒπ‘  ∈ β„• βˆƒπ‘ ∈ (𝐡 ↑m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)β€˜((((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€)) Γ— ((𝑁 maAdju 𝑃)β€˜(((var1β€˜π‘…)( ·𝑠 β€˜π‘Œ)(1rβ€˜π‘Œ)) βˆ’ (π‘‡β€˜π‘€))))) = ((Poly1β€˜π΄) Ξ£g (𝑛 ∈ β„•0 ↦ ((π‘ˆβ€˜(πΊβ€˜π‘›))( ·𝑠 β€˜(Poly1β€˜π΄))(𝑛(.gβ€˜(mulGrpβ€˜(Poly1β€˜π΄)))(var1β€˜π΄))))) β†’ βˆƒπ‘  ∈ β„• βˆƒπ‘ ∈ (𝐡 ↑m (0...𝑠))βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 )))
5823, 57mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ βˆƒπ‘  ∈ β„• βˆƒπ‘ ∈ (𝐡 ↑m (0...𝑠))βˆ€π‘› ∈ β„•0 (π‘ˆβ€˜(πΊβ€˜π‘›)) = (((coe1β€˜πΎ)β€˜π‘›) βˆ— 1 ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  ifcif 4524   class class class wbr 5143   ↦ cmpt 5226  β€˜cfv 6543  (class class class)co 7416   ↑m cmap 8843  Fincfn 8962  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278   βˆ’ cmin 11474  β„•cn 12242  β„•0cn0 12502  ...cfz 13516  Basecbs 17179  .rcmulr 17233   ·𝑠 cvsca 17236  0gc0g 17420   Ξ£g cgsu 17421  -gcsg 18896  .gcmg 19027  mulGrpcmgp 20078  1rcur 20125  CRingccrg 20178  algSccascl 21790  var1cv1 22103  Poly1cpl1 22104  coe1cco1 22105   Mat cmat 22325   maAdju cmadu 22552   ConstPolyMat ccpmat 22623   matToPolyMat cmat2pmat 22624   cPolyMatToMat ccpmat2mat 22625   pMatToMatPoly cpm2mp 22712   CharPlyMat cchpmat 22746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7991  df-2nd 7992  df-supp 8164  df-tpos 8230  df-cur 8271  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-xnn0 12575  df-z 12589  df-dec 12708  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-seq 13999  df-exp 14059  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-splice 14732  df-reverse 14741  df-s2 14831  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-0g 17422  df-gsum 17423  df-prds 17428  df-pws 17430  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-efmnd 18825  df-grp 18897  df-minusg 18898  df-sbg 18899  df-mulg 19028  df-subg 19082  df-ghm 19172  df-gim 19217  df-cntz 19272  df-oppg 19301  df-symg 19326  df-pmtr 19401  df-psgn 19450  df-evpm 19451  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-srg 20131  df-ring 20179  df-cring 20180  df-oppr 20277  df-dvdsr 20300  df-unit 20301  df-invr 20331  df-dvr 20344  df-rhm 20415  df-subrng 20487  df-subrg 20512  df-drng 20630  df-lmod 20749  df-lss 20820  df-sra 21062  df-rgmod 21063  df-cnfld 21284  df-zring 21377  df-zrh 21433  df-dsmm 21670  df-frlm 21685  df-assa 21791  df-ascl 21793  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22107  df-vr1 22108  df-ply1 22109  df-coe1 22110  df-mamu 22309  df-mat 22326  df-mdet 22505  df-madu 22554  df-cpmat 22626  df-mat2pmat 22627  df-cpmat2mat 22628  df-decpmat 22683  df-pm2mp 22713  df-chpmat 22747
This theorem is referenced by:  cayhamlem3  22807
  Copyright terms: Public domain W3C validator