MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeq Structured version   Visualization version   GIF version

Theorem chcoeffeq 22832
Description: The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeq ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏,𝑠,𝐴   𝐵,𝑏,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑛,𝑠   𝑛,𝑊   𝑌,𝑏,𝑠   0 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠
Allowed substitution hints:   𝐶(𝑛,𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑊(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chcoeffeq
StepHypRef Expression
1 chcoeffeq.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 chcoeffeq.b . . 3 𝐵 = (Base‘𝐴)
3 chcoeffeq.p . . 3 𝑃 = (Poly1𝑅)
4 chcoeffeq.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 chcoeffeq.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 chcoeffeq.r . . 3 × = (.r𝑌)
7 chcoeffeq.s . . 3 = (-g𝑌)
8 chcoeffeq.0 . . 3 0 = (0g𝑌)
9 chcoeffeq.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
10 eqid 2725 . . 3 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
11 eqid 2725 . . 3 ( ·𝑠𝑌) = ( ·𝑠𝑌)
12 eqid 2725 . . 3 (1r𝑌) = (1r𝑌)
13 eqid 2725 . . 3 (var1𝑅) = (var1𝑅)
14 eqid 2725 . . 3 (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) = (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))
15 eqid 2725 . . 3 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
16 chcoeffeq.w . . 3 𝑊 = (Base‘𝑌)
17 eqid 2725 . . 3 (Poly1𝐴) = (Poly1𝐴)
18 eqid 2725 . . 3 (var1𝐴) = (var1𝐴)
19 eqid 2725 . . 3 ( ·𝑠 ‘(Poly1𝐴)) = ( ·𝑠 ‘(Poly1𝐴))
20 eqid 2725 . . 3 (.g‘(mulGrp‘(Poly1𝐴))) = (.g‘(mulGrp‘(Poly1𝐴)))
21 chcoeffeq.u . . 3 𝑈 = (𝑁 cPolyMatToMat 𝑅)
22 eqid 2725 . . 3 (𝑁 pMatToMatPoly 𝑅) = (𝑁 pMatToMatPoly 𝑅)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22cpmadumatpoly 22829 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
24 eqid 2725 . . . . . . 7 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
25 eqid 2725 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
26 chcoeffeq.c . . . . . . 7 𝐶 = (𝑁 CharPlyMat 𝑅)
27 chcoeffeq.k . . . . . . 7 𝐾 = (𝐶𝑀)
28 eqid 2725 . . . . . . 7 (𝐾( ·𝑠𝑌)(1r𝑌)) = (𝐾( ·𝑠𝑌)(1r𝑌))
29 chcoeffeq.1 . . . . . . 7 1 = (1r𝐴)
30 chcoeffeq.m . . . . . . 7 = ( ·𝑠𝐴)
311, 2, 3, 4, 13, 24, 11, 12, 25, 26, 27, 28, 29, 30, 5, 16, 17, 18, 19, 20, 22cpmidpmat 22819 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
32 eqid 2725 . . . . . . . 8 (𝑁 CharPlyMat 𝑅) = (𝑁 CharPlyMat 𝑅)
331, 2, 32, 3, 4, 13, 5, 7, 11, 12, 14, 15, 6cpmadurid 22813 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (((𝑁 CharPlyMat 𝑅)‘𝑀)( ·𝑠𝑌)(1r𝑌)))
3426fveq1i 6897 . . . . . . . . . . 11 (𝐶𝑀) = ((𝑁 CharPlyMat 𝑅)‘𝑀)
3527, 34eqtri 2753 . . . . . . . . . 10 𝐾 = ((𝑁 CharPlyMat 𝑅)‘𝑀)
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 = ((𝑁 CharPlyMat 𝑅)‘𝑀))
3736eqcomd 2731 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑁 CharPlyMat 𝑅)‘𝑀) = 𝐾)
3837oveq1d 7434 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((𝑁 CharPlyMat 𝑅)‘𝑀)( ·𝑠𝑌)(1r𝑌)) = (𝐾( ·𝑠𝑌)(1r𝑌)))
3933, 38eqtrd 2765 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)))
40 fveq2 6896 . . . . . . . . 9 (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))))
41 simpr 483 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
4241adantr 479 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
43 simpr 483 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
4442, 43eqeq12d 2741 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) ↔ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))))
451, 2, 3, 4, 6, 7, 8, 5, 26, 27, 9, 16, 29, 30, 21chcoeffeqlem 22831 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4645adantr 479 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4746adantr 479 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4844, 47sylbid 239 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4948exp31 418 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5049com24 95 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5140, 50syl5 34 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5251ex 411 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))))
5352com24 95 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))))
5431, 39, 53mp2d 49 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))
5554impl 454 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5655reximdva 3157 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5756reximdva 3157 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5823, 57mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  ifcif 4530   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  m cmap 8845  Fincfn 8964  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cmin 11476  cn 12245  0cn0 12505  ...cfz 13519  Basecbs 17183  .rcmulr 17237   ·𝑠 cvsca 17240  0gc0g 17424   Σg cgsu 17425  -gcsg 18900  .gcmg 19031  mulGrpcmgp 20086  1rcur 20133  CRingccrg 20186  algSccascl 21803  var1cv1 22118  Poly1cpl1 22119  coe1cco1 22120   Mat cmat 22351   maAdju cmadu 22578   ConstPolyMat ccpmat 22649   matToPolyMat cmat2pmat 22650   cPolyMatToMat ccpmat2mat 22651   pMatToMatPoly cpm2mp 22738   CharPlyMat cchpmat 22772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-cur 8273  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-word 14501  df-lsw 14549  df-concat 14557  df-s1 14582  df-substr 14627  df-pfx 14657  df-splice 14736  df-reverse 14745  df-s2 14835  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-efmnd 18829  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-gim 19222  df-cntz 19280  df-oppg 19309  df-symg 19334  df-pmtr 19409  df-psgn 19458  df-evpm 19459  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-srg 20139  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-drng 20638  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-dsmm 21683  df-frlm 21698  df-assa 21804  df-ascl 21806  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-mamu 22335  df-mat 22352  df-mdet 22531  df-madu 22580  df-cpmat 22652  df-mat2pmat 22653  df-cpmat2mat 22654  df-decpmat 22709  df-pm2mp 22739  df-chpmat 22773
This theorem is referenced by:  cayhamlem3  22833
  Copyright terms: Public domain W3C validator