MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeq Structured version   Visualization version   GIF version

Theorem chcoeffeq 22796
Description: The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeq ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏,𝑠,𝐴   𝐵,𝑏,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑛,𝑠   𝑛,𝑊   𝑌,𝑏,𝑠   0 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠
Allowed substitution hints:   𝐶(𝑛,𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑊(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chcoeffeq
StepHypRef Expression
1 chcoeffeq.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 chcoeffeq.b . . 3 𝐵 = (Base‘𝐴)
3 chcoeffeq.p . . 3 𝑃 = (Poly1𝑅)
4 chcoeffeq.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 chcoeffeq.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 chcoeffeq.r . . 3 × = (.r𝑌)
7 chcoeffeq.s . . 3 = (-g𝑌)
8 chcoeffeq.0 . . 3 0 = (0g𝑌)
9 chcoeffeq.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
10 eqid 2731 . . 3 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
11 eqid 2731 . . 3 ( ·𝑠𝑌) = ( ·𝑠𝑌)
12 eqid 2731 . . 3 (1r𝑌) = (1r𝑌)
13 eqid 2731 . . 3 (var1𝑅) = (var1𝑅)
14 eqid 2731 . . 3 (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) = (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))
15 eqid 2731 . . 3 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
16 chcoeffeq.w . . 3 𝑊 = (Base‘𝑌)
17 eqid 2731 . . 3 (Poly1𝐴) = (Poly1𝐴)
18 eqid 2731 . . 3 (var1𝐴) = (var1𝐴)
19 eqid 2731 . . 3 ( ·𝑠 ‘(Poly1𝐴)) = ( ·𝑠 ‘(Poly1𝐴))
20 eqid 2731 . . 3 (.g‘(mulGrp‘(Poly1𝐴))) = (.g‘(mulGrp‘(Poly1𝐴)))
21 chcoeffeq.u . . 3 𝑈 = (𝑁 cPolyMatToMat 𝑅)
22 eqid 2731 . . 3 (𝑁 pMatToMatPoly 𝑅) = (𝑁 pMatToMatPoly 𝑅)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22cpmadumatpoly 22793 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
24 eqid 2731 . . . . . . 7 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
25 eqid 2731 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
26 chcoeffeq.c . . . . . . 7 𝐶 = (𝑁 CharPlyMat 𝑅)
27 chcoeffeq.k . . . . . . 7 𝐾 = (𝐶𝑀)
28 eqid 2731 . . . . . . 7 (𝐾( ·𝑠𝑌)(1r𝑌)) = (𝐾( ·𝑠𝑌)(1r𝑌))
29 chcoeffeq.1 . . . . . . 7 1 = (1r𝐴)
30 chcoeffeq.m . . . . . . 7 = ( ·𝑠𝐴)
311, 2, 3, 4, 13, 24, 11, 12, 25, 26, 27, 28, 29, 30, 5, 16, 17, 18, 19, 20, 22cpmidpmat 22783 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
32 eqid 2731 . . . . . . . 8 (𝑁 CharPlyMat 𝑅) = (𝑁 CharPlyMat 𝑅)
331, 2, 32, 3, 4, 13, 5, 7, 11, 12, 14, 15, 6cpmadurid 22777 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (((𝑁 CharPlyMat 𝑅)‘𝑀)( ·𝑠𝑌)(1r𝑌)))
3426fveq1i 6818 . . . . . . . . . . 11 (𝐶𝑀) = ((𝑁 CharPlyMat 𝑅)‘𝑀)
3527, 34eqtri 2754 . . . . . . . . . 10 𝐾 = ((𝑁 CharPlyMat 𝑅)‘𝑀)
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 = ((𝑁 CharPlyMat 𝑅)‘𝑀))
3736eqcomd 2737 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑁 CharPlyMat 𝑅)‘𝑀) = 𝐾)
3837oveq1d 7356 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((𝑁 CharPlyMat 𝑅)‘𝑀)( ·𝑠𝑌)(1r𝑌)) = (𝐾( ·𝑠𝑌)(1r𝑌)))
3933, 38eqtrd 2766 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)))
40 fveq2 6817 . . . . . . . . 9 (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))))
41 simpr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
4241adantr 480 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
43 simpr 484 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
4442, 43eqeq12d 2747 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) ↔ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))))
451, 2, 3, 4, 6, 7, 8, 5, 26, 27, 9, 16, 29, 30, 21chcoeffeqlem 22795 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4645adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4746adantr 480 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4844, 47sylbid 240 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4948exp31 419 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5049com24 95 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5140, 50syl5 34 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5251ex 412 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))))
5352com24 95 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))))
5431, 39, 53mp2d 49 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))
5554impl 455 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5655reximdva 3145 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5756reximdva 3145 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5823, 57mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ifcif 4470   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341  m cmap 8745  Fincfn 8864  0cc0 11001  1c1 11002   + caddc 11004   < clt 11141  cmin 11339  cn 12120  0cn0 12376  ...cfz 13402  Basecbs 17115  .rcmulr 17157   ·𝑠 cvsca 17160  0gc0g 17338   Σg cgsu 17339  -gcsg 18843  .gcmg 18975  mulGrpcmgp 20053  1rcur 20094  CRingccrg 20147  algSccascl 21784  var1cv1 22083  Poly1cpl1 22084  coe1cco1 22085   Mat cmat 22317   maAdju cmadu 22542   ConstPolyMat ccpmat 22613   matToPolyMat cmat2pmat 22614   cPolyMatToMat ccpmat2mat 22615   pMatToMatPoly cpm2mp 22702   CharPlyMat cchpmat 22736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-cur 8192  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-s1 14499  df-substr 14544  df-pfx 14574  df-splice 14652  df-reverse 14661  df-s2 14750  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-gim 19166  df-cntz 19224  df-oppg 19253  df-symg 19277  df-pmtr 19349  df-psgn 19398  df-evpm 19399  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-drng 20641  df-lmod 20790  df-lss 20860  df-sra 21102  df-rgmod 21103  df-cnfld 21287  df-zring 21379  df-zrh 21435  df-dsmm 21664  df-frlm 21679  df-assa 21785  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-mamu 22301  df-mat 22318  df-mdet 22495  df-madu 22544  df-cpmat 22616  df-mat2pmat 22617  df-cpmat2mat 22618  df-decpmat 22673  df-pm2mp 22703  df-chpmat 22737
This theorem is referenced by:  cayhamlem3  22797
  Copyright terms: Public domain W3C validator