MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chcoeffeq Structured version   Visualization version   GIF version

Theorem chcoeffeq 22080
Description: The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
Assertion
Ref Expression
chcoeffeq ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏,𝑠,𝐴   𝐵,𝑏,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑛,𝑠   𝑛,𝑊   𝑌,𝑏,𝑠   0 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠
Allowed substitution hints:   𝐶(𝑛,𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑊(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chcoeffeq
StepHypRef Expression
1 chcoeffeq.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 chcoeffeq.b . . 3 𝐵 = (Base‘𝐴)
3 chcoeffeq.p . . 3 𝑃 = (Poly1𝑅)
4 chcoeffeq.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 chcoeffeq.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 chcoeffeq.r . . 3 × = (.r𝑌)
7 chcoeffeq.s . . 3 = (-g𝑌)
8 chcoeffeq.0 . . 3 0 = (0g𝑌)
9 chcoeffeq.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
10 eqid 2736 . . 3 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
11 eqid 2736 . . 3 ( ·𝑠𝑌) = ( ·𝑠𝑌)
12 eqid 2736 . . 3 (1r𝑌) = (1r𝑌)
13 eqid 2736 . . 3 (var1𝑅) = (var1𝑅)
14 eqid 2736 . . 3 (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) = (((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))
15 eqid 2736 . . 3 (𝑁 maAdju 𝑃) = (𝑁 maAdju 𝑃)
16 chcoeffeq.w . . 3 𝑊 = (Base‘𝑌)
17 eqid 2736 . . 3 (Poly1𝐴) = (Poly1𝐴)
18 eqid 2736 . . 3 (var1𝐴) = (var1𝐴)
19 eqid 2736 . . 3 ( ·𝑠 ‘(Poly1𝐴)) = ( ·𝑠 ‘(Poly1𝐴))
20 eqid 2736 . . 3 (.g‘(mulGrp‘(Poly1𝐴))) = (.g‘(mulGrp‘(Poly1𝐴)))
21 chcoeffeq.u . . 3 𝑈 = (𝑁 cPolyMatToMat 𝑅)
22 eqid 2736 . . 3 (𝑁 pMatToMatPoly 𝑅) = (𝑁 pMatToMatPoly 𝑅)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22cpmadumatpoly 22077 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
24 eqid 2736 . . . . . . 7 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
25 eqid 2736 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
26 chcoeffeq.c . . . . . . 7 𝐶 = (𝑁 CharPlyMat 𝑅)
27 chcoeffeq.k . . . . . . 7 𝐾 = (𝐶𝑀)
28 eqid 2736 . . . . . . 7 (𝐾( ·𝑠𝑌)(1r𝑌)) = (𝐾( ·𝑠𝑌)(1r𝑌))
29 chcoeffeq.1 . . . . . . 7 1 = (1r𝐴)
30 chcoeffeq.m . . . . . . 7 = ( ·𝑠𝐴)
311, 2, 3, 4, 13, 24, 11, 12, 25, 26, 27, 28, 29, 30, 5, 16, 17, 18, 19, 20, 22cpmidpmat 22067 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
32 eqid 2736 . . . . . . . 8 (𝑁 CharPlyMat 𝑅) = (𝑁 CharPlyMat 𝑅)
331, 2, 32, 3, 4, 13, 5, 7, 11, 12, 14, 15, 6cpmadurid 22061 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (((𝑁 CharPlyMat 𝑅)‘𝑀)( ·𝑠𝑌)(1r𝑌)))
3426fveq1i 6805 . . . . . . . . . . 11 (𝐶𝑀) = ((𝑁 CharPlyMat 𝑅)‘𝑀)
3527, 34eqtri 2764 . . . . . . . . . 10 𝐾 = ((𝑁 CharPlyMat 𝑅)‘𝑀)
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 = ((𝑁 CharPlyMat 𝑅)‘𝑀))
3736eqcomd 2742 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑁 CharPlyMat 𝑅)‘𝑀) = 𝐾)
3837oveq1d 7322 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((𝑁 CharPlyMat 𝑅)‘𝑀)( ·𝑠𝑌)(1r𝑌)) = (𝐾( ·𝑠𝑌)(1r𝑌)))
3933, 38eqtrd 2776 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)))
40 fveq2 6804 . . . . . . . . 9 (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))))
41 simpr 486 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
4241adantr 482 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
43 simpr 486 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))))
4442, 43eqeq12d 2752 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) ↔ ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))))
451, 2, 3, 4, 6, 7, 8, 5, 26, 27, 9, 16, 29, 30, 21chcoeffeqlem 22079 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4645adantr 482 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4746adantr 482 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4844, 47sylbid 239 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) ∧ ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴)))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
4948exp31 421 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5049com24 95 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5140, 50syl5 34 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))))
5251ex 414 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))))
5352com24 95 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((𝑁 pMatToMatPoly 𝑅)‘(𝐾( ·𝑠𝑌)(1r𝑌))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1𝐾)‘𝑛) 1 )( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → (((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)))) = (𝐾( ·𝑠𝑌)(1r𝑌)) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))))
5431, 39, 53mp2d 49 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))))
5554impl 457 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5655reximdva 3162 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5756reximdva 3162 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))((𝑁 pMatToMatPoly 𝑅)‘((((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀)) × ((𝑁 maAdju 𝑃)‘(((var1𝑅)( ·𝑠𝑌)(1r𝑌)) (𝑇𝑀))))) = ((Poly1𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺𝑛))( ·𝑠 ‘(Poly1𝐴))(𝑛(.g‘(mulGrp‘(Poly1𝐴)))(var1𝐴))))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
5823, 57mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  wrex 3071  ifcif 4465   class class class wbr 5081  cmpt 5164  cfv 6458  (class class class)co 7307  m cmap 8646  Fincfn 8764  0cc0 10917  1c1 10918   + caddc 10920   < clt 11055  cmin 11251  cn 12019  0cn0 12279  ...cfz 13285  Basecbs 16957  .rcmulr 17008   ·𝑠 cvsca 17011  0gc0g 17195   Σg cgsu 17196  -gcsg 18624  .gcmg 18745  mulGrpcmgp 19765  1rcur 19782  CRingccrg 19829  algSccascl 21104  var1cv1 21392  Poly1cpl1 21393  coe1cco1 21394   Mat cmat 21599   maAdju cmadu 21826   ConstPolyMat ccpmat 21897   matToPolyMat cmat2pmat 21898   cPolyMatToMat ccpmat2mat 21899   pMatToMatPoly cpm2mp 21986   CharPlyMat cchpmat 22020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-xor 1508  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-ot 4574  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-ofr 7566  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-tpos 8073  df-cur 8114  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-xnn0 12352  df-z 12366  df-dec 12484  df-uz 12629  df-rp 12777  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-word 14263  df-lsw 14311  df-concat 14319  df-s1 14346  df-substr 14399  df-pfx 14429  df-splice 14508  df-reverse 14517  df-s2 14606  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-hom 17031  df-cco 17032  df-0g 17197  df-gsum 17198  df-prds 17203  df-pws 17205  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mhm 18475  df-submnd 18476  df-efmnd 18553  df-grp 18625  df-minusg 18626  df-sbg 18627  df-mulg 18746  df-subg 18797  df-ghm 18877  df-gim 18920  df-cntz 18968  df-oppg 18995  df-symg 19020  df-pmtr 19095  df-psgn 19144  df-evpm 19145  df-cmn 19433  df-abl 19434  df-mgp 19766  df-ur 19783  df-srg 19787  df-ring 19830  df-cring 19831  df-oppr 19907  df-dvdsr 19928  df-unit 19929  df-invr 19959  df-dvr 19970  df-rnghom 20004  df-drng 20038  df-subrg 20067  df-lmod 20170  df-lss 20239  df-sra 20479  df-rgmod 20480  df-cnfld 20643  df-zring 20716  df-zrh 20750  df-dsmm 20984  df-frlm 20999  df-assa 21105  df-ascl 21107  df-psr 21157  df-mvr 21158  df-mpl 21159  df-opsr 21161  df-psr1 21396  df-vr1 21397  df-ply1 21398  df-coe1 21399  df-mamu 21578  df-mat 21600  df-mdet 21779  df-madu 21828  df-cpmat 21900  df-mat2pmat 21901  df-cpmat2mat 21902  df-decpmat 21957  df-pm2mp 21987  df-chpmat 22021
This theorem is referenced by:  cayhamlem3  22081
  Copyright terms: Public domain W3C validator