MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemaplem3 Structured version   Visualization version   GIF version

Theorem wemaplem3 9586
Description: Lemma for wemapso 9589. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemaplem2.p (𝜑𝑃 ∈ (𝐵m 𝐴))
wemaplem2.x (𝜑𝑋 ∈ (𝐵m 𝐴))
wemaplem2.q (𝜑𝑄 ∈ (𝐵m 𝐴))
wemaplem2.r (𝜑𝑅 Or 𝐴)
wemaplem2.s (𝜑𝑆 Po 𝐵)
wemaplem3.px (𝜑𝑃𝑇𝑋)
wemaplem3.xq (𝜑𝑋𝑇𝑄)
Assertion
Ref Expression
wemaplem3 (𝜑𝑃𝑇𝑄)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝑋   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝑃,𝑥,𝑦,𝑧   𝑤,𝑄,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemaplem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemaplem3.px . . 3 (𝜑𝑃𝑇𝑋)
2 wemaplem2.p . . . 4 (𝜑𝑃 ∈ (𝐵m 𝐴))
3 wemaplem2.x . . . 4 (𝜑𝑋 ∈ (𝐵m 𝐴))
4 wemapso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
54wemaplem1 9584 . . . 4 ((𝑃 ∈ (𝐵m 𝐴) ∧ 𝑋 ∈ (𝐵m 𝐴)) → (𝑃𝑇𝑋 ↔ ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))))
62, 3, 5syl2anc 584 . . 3 (𝜑 → (𝑃𝑇𝑋 ↔ ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))))
71, 6mpbid 232 . 2 (𝜑 → ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))
8 wemaplem3.xq . . 3 (𝜑𝑋𝑇𝑄)
9 wemaplem2.q . . . 4 (𝜑𝑄 ∈ (𝐵m 𝐴))
104wemaplem1 9584 . . . 4 ((𝑋 ∈ (𝐵m 𝐴) ∧ 𝑄 ∈ (𝐵m 𝐴)) → (𝑋𝑇𝑄 ↔ ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))))
113, 9, 10syl2anc 584 . . 3 (𝜑 → (𝑋𝑇𝑄 ↔ ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))))
128, 11mpbid 232 . 2 (𝜑 → ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
132ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑃 ∈ (𝐵m 𝐴))
143ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑋 ∈ (𝐵m 𝐴))
159ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑄 ∈ (𝐵m 𝐴))
16 wemaplem2.r . . . . . 6 (𝜑𝑅 Or 𝐴)
1716ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑅 Or 𝐴)
18 wemaplem2.s . . . . . 6 (𝜑𝑆 Po 𝐵)
1918ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑆 Po 𝐵)
20 simplrl 777 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑎𝐴)
21 simp2rl 1241 . . . . . 6 ((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑃𝑎)𝑆(𝑋𝑎))
22213expa 1117 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑃𝑎)𝑆(𝑋𝑎))
23 simprr 773 . . . . . 6 ((𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))) → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
2423ad2antlr 727 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
25 simprl 771 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑏𝐴)
26 simprrl 781 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑋𝑏)𝑆(𝑄𝑏))
27 simprrr 782 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
284, 13, 14, 15, 17, 19, 20, 22, 24, 25, 26, 27wemaplem2 9585 . . . 4 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑃𝑇𝑄)
2928rexlimdvaa 3154 . . 3 ((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) → (∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → 𝑃𝑇𝑄))
3029rexlimdvaa 3154 . 2 (𝜑 → (∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))) → (∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → 𝑃𝑇𝑄)))
317, 12, 30mp2d 49 1 (𝜑𝑃𝑇𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  {copab 5210   Po wpo 5595   Or wor 5596  cfv 6563  (class class class)co 7431  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867
This theorem is referenced by:  wemappo  9587
  Copyright terms: Public domain W3C validator