Step | Hyp | Ref
| Expression |
1 | | wemaplem3.px |
. . 3
⊢ (𝜑 → 𝑃𝑇𝑋) |
2 | | wemaplem2.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) |
3 | | wemaplem2.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) |
4 | | wemapso.t |
. . . . 5
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
5 | 4 | wemaplem1 9305 |
. . . 4
⊢ ((𝑃 ∈ (𝐵 ↑m 𝐴) ∧ 𝑋 ∈ (𝐵 ↑m 𝐴)) → (𝑃𝑇𝑋 ↔ ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) |
6 | 2, 3, 5 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑃𝑇𝑋 ↔ ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) |
7 | 1, 6 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)))) |
8 | | wemaplem3.xq |
. . 3
⊢ (𝜑 → 𝑋𝑇𝑄) |
9 | | wemaplem2.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) |
10 | 4 | wemaplem1 9305 |
. . . 4
⊢ ((𝑋 ∈ (𝐵 ↑m 𝐴) ∧ 𝑄 ∈ (𝐵 ↑m 𝐴)) → (𝑋𝑇𝑄 ↔ ∃𝑏 ∈ 𝐴 ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) |
11 | 3, 9, 10 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑋𝑇𝑄 ↔ ∃𝑏 ∈ 𝐴 ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) |
12 | 8, 11 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑏 ∈ 𝐴 ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐)))) |
13 | 2 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑃 ∈ (𝐵 ↑m 𝐴)) |
14 | 3 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑋 ∈ (𝐵 ↑m 𝐴)) |
15 | 9 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑄 ∈ (𝐵 ↑m 𝐴)) |
16 | | wemaplem2.r |
. . . . . 6
⊢ (𝜑 → 𝑅 Or 𝐴) |
17 | 16 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑅 Or 𝐴) |
18 | | wemaplem2.s |
. . . . . 6
⊢ (𝜑 → 𝑆 Po 𝐵) |
19 | 18 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑆 Po 𝐵) |
20 | | simplrl 774 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑎 ∈ 𝐴) |
21 | | simp2rl 1241 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) |
22 | 21 | 3expa 1117 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) |
23 | | simprr 770 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)))) → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) |
24 | 23 | ad2antlr 724 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) |
25 | | simprl 768 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑏 ∈ 𝐴) |
26 | | simprrl 778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) |
27 | | simprrr 779 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) |
28 | 4, 13, 14, 15, 17, 19, 20, 22, 24, 25, 26, 27 | wemaplem2 9306 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) ∧ (𝑏 ∈ 𝐴 ∧ ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))))) → 𝑃𝑇𝑄) |
29 | 28 | rexlimdvaa 3214 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))))) → (∃𝑏 ∈ 𝐴 ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → 𝑃𝑇𝑄)) |
30 | 29 | rexlimdvaa 3214 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) → (∃𝑏 ∈ 𝐴 ((𝑋‘𝑏)𝑆(𝑄‘𝑏) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → 𝑃𝑇𝑄))) |
31 | 7, 12, 30 | mp2d 49 |
1
⊢ (𝜑 → 𝑃𝑇𝑄) |