MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemaplem3 Structured version   Visualization version   GIF version

Theorem wemaplem3 9307
Description: Lemma for wemapso 9310. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemaplem2.p (𝜑𝑃 ∈ (𝐵m 𝐴))
wemaplem2.x (𝜑𝑋 ∈ (𝐵m 𝐴))
wemaplem2.q (𝜑𝑄 ∈ (𝐵m 𝐴))
wemaplem2.r (𝜑𝑅 Or 𝐴)
wemaplem2.s (𝜑𝑆 Po 𝐵)
wemaplem3.px (𝜑𝑃𝑇𝑋)
wemaplem3.xq (𝜑𝑋𝑇𝑄)
Assertion
Ref Expression
wemaplem3 (𝜑𝑃𝑇𝑄)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝑋   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝑃,𝑥,𝑦,𝑧   𝑤,𝑄,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemaplem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemaplem3.px . . 3 (𝜑𝑃𝑇𝑋)
2 wemaplem2.p . . . 4 (𝜑𝑃 ∈ (𝐵m 𝐴))
3 wemaplem2.x . . . 4 (𝜑𝑋 ∈ (𝐵m 𝐴))
4 wemapso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
54wemaplem1 9305 . . . 4 ((𝑃 ∈ (𝐵m 𝐴) ∧ 𝑋 ∈ (𝐵m 𝐴)) → (𝑃𝑇𝑋 ↔ ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))))
62, 3, 5syl2anc 584 . . 3 (𝜑 → (𝑃𝑇𝑋 ↔ ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))))
71, 6mpbid 231 . 2 (𝜑 → ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))
8 wemaplem3.xq . . 3 (𝜑𝑋𝑇𝑄)
9 wemaplem2.q . . . 4 (𝜑𝑄 ∈ (𝐵m 𝐴))
104wemaplem1 9305 . . . 4 ((𝑋 ∈ (𝐵m 𝐴) ∧ 𝑄 ∈ (𝐵m 𝐴)) → (𝑋𝑇𝑄 ↔ ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))))
113, 9, 10syl2anc 584 . . 3 (𝜑 → (𝑋𝑇𝑄 ↔ ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))))
128, 11mpbid 231 . 2 (𝜑 → ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
132ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑃 ∈ (𝐵m 𝐴))
143ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑋 ∈ (𝐵m 𝐴))
159ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑄 ∈ (𝐵m 𝐴))
16 wemaplem2.r . . . . . 6 (𝜑𝑅 Or 𝐴)
1716ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑅 Or 𝐴)
18 wemaplem2.s . . . . . 6 (𝜑𝑆 Po 𝐵)
1918ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑆 Po 𝐵)
20 simplrl 774 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑎𝐴)
21 simp2rl 1241 . . . . . 6 ((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑃𝑎)𝑆(𝑋𝑎))
22213expa 1117 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑃𝑎)𝑆(𝑋𝑎))
23 simprr 770 . . . . . 6 ((𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))) → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
2423ad2antlr 724 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
25 simprl 768 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑏𝐴)
26 simprrl 778 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑋𝑏)𝑆(𝑄𝑏))
27 simprrr 779 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
284, 13, 14, 15, 17, 19, 20, 22, 24, 25, 26, 27wemaplem2 9306 . . . 4 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑃𝑇𝑄)
2928rexlimdvaa 3214 . . 3 ((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) → (∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → 𝑃𝑇𝑄))
3029rexlimdvaa 3214 . 2 (𝜑 → (∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))) → (∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → 𝑃𝑇𝑄)))
317, 12, 30mp2d 49 1 (𝜑𝑃𝑇𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  {copab 5136   Po wpo 5501   Or wor 5502  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  wemappo  9308
  Copyright terms: Public domain W3C validator