MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemaplem3 Structured version   Visualization version   GIF version

Theorem wemaplem3 8996
Description: Lemma for wemapso 8999. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemaplem2.a (𝜑𝐴 ∈ V)
wemaplem2.p (𝜑𝑃 ∈ (𝐵m 𝐴))
wemaplem2.x (𝜑𝑋 ∈ (𝐵m 𝐴))
wemaplem2.q (𝜑𝑄 ∈ (𝐵m 𝐴))
wemaplem2.r (𝜑𝑅 Or 𝐴)
wemaplem2.s (𝜑𝑆 Po 𝐵)
wemaplem3.px (𝜑𝑃𝑇𝑋)
wemaplem3.xq (𝜑𝑋𝑇𝑄)
Assertion
Ref Expression
wemaplem3 (𝜑𝑃𝑇𝑄)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝑋   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝑃,𝑥,𝑦,𝑧   𝑤,𝑄,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemaplem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemaplem3.px . . 3 (𝜑𝑃𝑇𝑋)
2 wemaplem2.p . . . 4 (𝜑𝑃 ∈ (𝐵m 𝐴))
3 wemaplem2.x . . . 4 (𝜑𝑋 ∈ (𝐵m 𝐴))
4 wemapso.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
54wemaplem1 8994 . . . 4 ((𝑃 ∈ (𝐵m 𝐴) ∧ 𝑋 ∈ (𝐵m 𝐴)) → (𝑃𝑇𝑋 ↔ ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))))
62, 3, 5syl2anc 587 . . 3 (𝜑 → (𝑃𝑇𝑋 ↔ ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))))
71, 6mpbid 235 . 2 (𝜑 → ∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))
8 wemaplem3.xq . . 3 (𝜑𝑋𝑇𝑄)
9 wemaplem2.q . . . 4 (𝜑𝑄 ∈ (𝐵m 𝐴))
104wemaplem1 8994 . . . 4 ((𝑋 ∈ (𝐵m 𝐴) ∧ 𝑄 ∈ (𝐵m 𝐴)) → (𝑋𝑇𝑄 ↔ ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))))
113, 9, 10syl2anc 587 . . 3 (𝜑 → (𝑋𝑇𝑄 ↔ ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))))
128, 11mpbid 235 . 2 (𝜑 → ∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
13 wemaplem2.a . . . . . 6 (𝜑𝐴 ∈ V)
1413ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝐴 ∈ V)
152ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑃 ∈ (𝐵m 𝐴))
163ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑋 ∈ (𝐵m 𝐴))
179ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑄 ∈ (𝐵m 𝐴))
18 wemaplem2.r . . . . . 6 (𝜑𝑅 Or 𝐴)
1918ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑅 Or 𝐴)
20 wemaplem2.s . . . . . 6 (𝜑𝑆 Po 𝐵)
2120ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑆 Po 𝐵)
22 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑎𝐴)
23 simp2rl 1239 . . . . . 6 ((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑃𝑎)𝑆(𝑋𝑎))
24233expa 1115 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑃𝑎)𝑆(𝑋𝑎))
25 simprr 772 . . . . . 6 ((𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))) → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
2625ad2antlr 726 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
27 simprl 770 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑏𝐴)
28 simprrl 780 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → (𝑋𝑏)𝑆(𝑄𝑏))
29 simprrr 781 . . . . 5 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
304, 14, 15, 16, 17, 19, 21, 22, 24, 26, 27, 28, 29wemaplem2 8995 . . . 4 (((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) ∧ (𝑏𝐴 ∧ ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))) → 𝑃𝑇𝑄)
3130rexlimdvaa 3244 . . 3 ((𝜑 ∧ (𝑎𝐴 ∧ ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))))) → (∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → 𝑃𝑇𝑄))
3231rexlimdvaa 3244 . 2 (𝜑 → (∃𝑎𝐴 ((𝑃𝑎)𝑆(𝑋𝑎) ∧ ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐))) → (∃𝑏𝐴 ((𝑋𝑏)𝑆(𝑄𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → 𝑃𝑇𝑄)))
337, 12, 32mp2d 49 1 (𝜑𝑃𝑇𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441   class class class wbr 5030  {copab 5092   Po wpo 5436   Or wor 5437  cfv 6324  (class class class)co 7135  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by:  wemappo  8997
  Copyright terms: Public domain W3C validator