| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneref | Structured version Visualization version GIF version | ||
| Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.) |
| Ref | Expression |
|---|---|
| fneref | ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | ssid 4006 | . . . . 5 ⊢ 𝑥 ⊆ 𝑥 | |
| 3 | elequ2 2123 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) | |
| 4 | sseq1 4009 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥))) |
| 6 | 5 | rspcev 3622 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 7 | 2, 6 | mpanr2 704 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 8 | 7 | rgen2 3199 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) |
| 9 | 1, 8 | pm3.2i 470 | . 2 ⊢ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 10 | 1, 1 | isfne2 36343 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴Fne𝐴 ↔ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| 11 | 9, 10 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∪ cuni 4907 class class class wbr 5143 Fnecfne 36337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-topgen 17488 df-fne 36338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |