Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneref Structured version   Visualization version   GIF version

Theorem fneref 36417
Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.)
Assertion
Ref Expression
fneref (𝐴𝑉𝐴Fne𝐴)

Proof of Theorem fneref
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 𝐴 = 𝐴
2 ssid 3953 . . . . 5 𝑥𝑥
3 elequ2 2128 . . . . . . 7 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
4 sseq1 3956 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
53, 4anbi12d 632 . . . . . 6 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
65rspcev 3573 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
72, 6mpanr2 704 . . . 4 ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
87rgen2 3173 . . 3 𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥)
91, 8pm3.2i 470 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))
101, 1isfne2 36409 . 2 (𝐴𝑉 → (𝐴Fne𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))))
119, 10mpbiri 258 1 (𝐴𝑉𝐴Fne𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   cuni 4860   class class class wbr 5095  Fnecfne 36403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-topgen 17351  df-fne 36404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator