Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneref Structured version   Visualization version   GIF version

Theorem fneref 36368
Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.)
Assertion
Ref Expression
fneref (𝐴𝑉𝐴Fne𝐴)

Proof of Theorem fneref
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 𝐴 = 𝐴
2 ssid 3981 . . . . 5 𝑥𝑥
3 elequ2 2123 . . . . . . 7 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
4 sseq1 3984 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
53, 4anbi12d 632 . . . . . 6 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
65rspcev 3601 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
72, 6mpanr2 704 . . . 4 ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
87rgen2 3184 . . 3 𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥)
91, 8pm3.2i 470 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))
101, 1isfne2 36360 . 2 (𝐴𝑉 → (𝐴Fne𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))))
119, 10mpbiri 258 1 (𝐴𝑉𝐴Fne𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   cuni 4883   class class class wbr 5119  Fnecfne 36354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-topgen 17457  df-fne 36355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator