![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneref | Structured version Visualization version GIF version |
Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.) |
Ref | Expression |
---|---|
fneref | ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | ssid 4002 | . . . . 5 ⊢ 𝑥 ⊆ 𝑥 | |
3 | elequ2 2114 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) | |
4 | sseq1 4005 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥)) | |
5 | 3, 4 | anbi12d 631 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥))) |
6 | 5 | rspcev 3609 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
7 | 2, 6 | mpanr2 703 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
8 | 7 | rgen2 3194 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) |
9 | 1, 8 | pm3.2i 470 | . 2 ⊢ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
10 | 1, 1 | isfne2 35826 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴Fne𝐴 ↔ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
11 | 9, 10 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ⊆ wss 3947 ∪ cuni 4908 class class class wbr 5148 Fnecfne 35820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-topgen 17425 df-fne 35821 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |