| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneref | Structured version Visualization version GIF version | ||
| Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.) |
| Ref | Expression |
|---|---|
| fneref | ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | ssid 3981 | . . . . 5 ⊢ 𝑥 ⊆ 𝑥 | |
| 3 | elequ2 2123 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) | |
| 4 | sseq1 3984 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥))) |
| 6 | 5 | rspcev 3601 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 7 | 2, 6 | mpanr2 704 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 8 | 7 | rgen2 3184 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) |
| 9 | 1, 8 | pm3.2i 470 | . 2 ⊢ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 10 | 1, 1 | isfne2 36360 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴Fne𝐴 ↔ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| 11 | 9, 10 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 Fnecfne 36354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-topgen 17457 df-fne 36355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |