Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneref Structured version   Visualization version   GIF version

Theorem fneref 32878
Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.)
Assertion
Ref Expression
fneref (𝐴𝑉𝐴Fne𝐴)

Proof of Theorem fneref
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . 3 𝐴 = 𝐴
2 ssid 3848 . . . . 5 𝑥𝑥
3 elequ2 2178 . . . . . . 7 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
4 sseq1 3851 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
53, 4anbi12d 624 . . . . . 6 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
65rspcev 3526 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
72, 6mpanr2 695 . . . 4 ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐴 (𝑦𝑧𝑧𝑥))
87rgen2 3184 . . 3 𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥)
91, 8pm3.2i 464 . 2 ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))
101, 1isfne2 32870 . 2 (𝐴𝑉 → (𝐴Fne𝐴 ↔ ( 𝐴 = 𝐴 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐴 (𝑦𝑧𝑧𝑥))))
119, 10mpbiri 250 1 (𝐴𝑉𝐴Fne𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118  wss 3798   cuni 4660   class class class wbr 4875  Fnecfne 32864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-topgen 16464  df-fne 32865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator