![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneref | Structured version Visualization version GIF version |
Description: Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.) |
Ref | Expression |
---|---|
fneref | ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | ssid 3999 | . . . . 5 ⊢ 𝑥 ⊆ 𝑥 | |
3 | elequ2 2113 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) | |
4 | sseq1 4002 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥)) | |
5 | 3, 4 | anbi12d 630 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥))) |
6 | 5 | rspcev 3606 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
7 | 2, 6 | mpanr2 701 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
8 | 7 | rgen2 3191 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) |
9 | 1, 8 | pm3.2i 470 | . 2 ⊢ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
10 | 1, 1 | isfne2 35735 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴Fne𝐴 ↔ (∪ 𝐴 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐴 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
11 | 9, 10 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴Fne𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 ∪ cuni 4902 class class class wbr 5141 Fnecfne 35729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-topgen 17396 df-fne 35730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |