MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpmg Structured version   Visualization version   GIF version

Theorem fpmg 8890
Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
fpmg ((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpmg
StepHypRef Expression
1 ssid 3986 . . . 4 𝐴𝐴
2 elpm2r 8867 . . . 4 (((𝐵𝑊𝐴𝑉) ∧ (𝐹:𝐴𝐵𝐴𝐴)) → 𝐹 ∈ (𝐵pm 𝐴))
31, 2mpanr2 704 . . 3 (((𝐵𝑊𝐴𝑉) ∧ 𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
433impa 1109 . 2 ((𝐵𝑊𝐴𝑉𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
543com12 1123 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107  wss 3931  wf 6537  (class class class)co 7413  pm cpm 8849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-pm 8851
This theorem is referenced by:  fpm  8897  mapsspm  8898  dvnff  25895  dvnply2  26265  0wlkonlem2  30066
  Copyright terms: Public domain W3C validator