| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpmg | Structured version Visualization version GIF version | ||
| Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| fpmg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | elpm2r 8818 | . . . 4 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐴)) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | |
| 3 | 1, 2 | mpanr2 704 | . . 3 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| 4 | 3 | 3impa 1109 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| 5 | 4 | 3com12 1123 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3914 ⟶wf 6507 (class class class)co 7387 ↑pm cpm 8800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pm 8802 |
| This theorem is referenced by: fpm 8848 mapsspm 8849 dvnff 25825 dvnply2 26195 0wlkonlem2 30048 |
| Copyright terms: Public domain | W3C validator |