MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpmg Structured version   Visualization version   GIF version

Theorem fpmg 8926
Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
fpmg ((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpmg
StepHypRef Expression
1 ssid 4031 . . . 4 𝐴𝐴
2 elpm2r 8903 . . . 4 (((𝐵𝑊𝐴𝑉) ∧ (𝐹:𝐴𝐵𝐴𝐴)) → 𝐹 ∈ (𝐵pm 𝐴))
31, 2mpanr2 703 . . 3 (((𝐵𝑊𝐴𝑉) ∧ 𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
433impa 1110 . 2 ((𝐵𝑊𝐴𝑉𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
543com12 1123 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wss 3976  wf 6569  (class class class)co 7448  pm cpm 8885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-pm 8887
This theorem is referenced by:  fpm  8933  mapsspm  8934  dvnff  25979  dvnply2  26347  0wlkonlem2  30151
  Copyright terms: Public domain W3C validator