Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > linepmap | Structured version Visualization version GIF version |
Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.) |
Ref | Expression |
---|---|
isline2.j | ⊢ ∨ = (join‘𝐾) |
isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
linepmap | ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) | |
2 | simpl2 1191 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
3 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | isline2.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atbase 37303 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (Base‘𝐾)) |
7 | simpl3 1192 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
8 | 3, 4 | atbase 37303 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (Base‘𝐾)) |
10 | isline2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
11 | 3, 10 | latjcl 18157 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
12 | 1, 6, 9, 11 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
13 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
14 | isline2.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
15 | 3, 13, 4, 14 | pmapval 37771 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) |
16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) |
17 | eqid 2738 | . . 3 ⊢ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} | |
18 | isline2.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
19 | 13, 10, 4, 18 | islinei 37754 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)})) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) |
20 | 17, 19 | mpanr2 701 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) |
21 | 16, 20 | eqeltrd 2839 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 Latclat 18149 Atomscatm 37277 Linesclines 37508 pmapcpmap 37511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-lat 18150 df-ats 37281 df-lines 37515 df-pmap 37518 |
This theorem is referenced by: cdleme3h 38249 cdleme7ga 38262 |
Copyright terms: Public domain | W3C validator |