Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepmap Structured version   Visualization version   GIF version

Theorem linepmap 38634
Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.)
Hypotheses
Ref Expression
isline2.j ∨ = (joinβ€˜πΎ)
isline2.a 𝐴 = (Atomsβ€˜πΎ)
isline2.n 𝑁 = (Linesβ€˜πΎ)
isline2.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
linepmap (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (π‘€β€˜(𝑃 ∨ 𝑄)) ∈ 𝑁)

Proof of Theorem linepmap
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝐾 ∈ Lat)
2 simpl2 1192 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 ∈ 𝐴)
3 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4 isline2.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
53, 4atbase 38147 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
62, 5syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
7 simpl3 1193 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝑄 ∈ 𝐴)
83, 4atbase 38147 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
97, 8syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
10 isline2.j . . . . 5 ∨ = (joinβ€˜πΎ)
113, 10latjcl 18388 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
121, 6, 9, 11syl3anc 1371 . . 3 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
13 eqid 2732 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
14 isline2.m . . . 4 𝑀 = (pmapβ€˜πΎ)
153, 13, 4, 14pmapval 38616 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ (π‘€β€˜(𝑃 ∨ 𝑄)) = {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)})
161, 12, 15syl2anc 584 . 2 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (π‘€β€˜(𝑃 ∨ 𝑄)) = {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)})
17 eqid 2732 . . 3 {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)} = {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)}
18 isline2.n . . . 4 𝑁 = (Linesβ€˜πΎ)
1913, 10, 4, 18islinei 38599 . . 3 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)} = {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)})) β†’ {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)} ∈ 𝑁)
2017, 19mpanr2 702 . 2 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ {π‘Ÿ ∈ 𝐴 ∣ π‘Ÿ(leβ€˜πΎ)(𝑃 ∨ 𝑄)} ∈ 𝑁)
2116, 20eqeltrd 2833 1 (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (π‘€β€˜(𝑃 ∨ 𝑄)) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  Linesclines 38353  pmapcpmap 38356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-lat 18381  df-ats 38125  df-lines 38360  df-pmap 38363
This theorem is referenced by:  cdleme3h  39094  cdleme7ga  39107
  Copyright terms: Public domain W3C validator