|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linepmap | Structured version Visualization version GIF version | ||
| Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.) | 
| Ref | Expression | 
|---|---|
| isline2.j | ⊢ ∨ = (join‘𝐾) | 
| isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| isline2.n | ⊢ 𝑁 = (Lines‘𝐾) | 
| isline2.m | ⊢ 𝑀 = (pmap‘𝐾) | 
| Ref | Expression | 
|---|---|
| linepmap | ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) | |
| 2 | simpl2 1192 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
| 3 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | isline2.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39291 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (Base‘𝐾)) | 
| 7 | simpl3 1193 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
| 8 | 3, 4 | atbase 39291 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (Base‘𝐾)) | 
| 10 | isline2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 3, 10 | latjcl 18485 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 12 | 1, 6, 9, 11 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 13 | eqid 2736 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 14 | isline2.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 15 | 3, 13, 4, 14 | pmapval 39760 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) | 
| 16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) | 
| 17 | eqid 2736 | . . 3 ⊢ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} | |
| 18 | isline2.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
| 19 | 13, 10, 4, 18 | islinei 39743 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)})) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) | 
| 20 | 17, 19 | mpanr2 704 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) | 
| 21 | 16, 20 | eqeltrd 2840 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 lecple 17305 joincjn 18358 Latclat 18477 Atomscatm 39265 Linesclines 39497 pmapcpmap 39500 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-lat 18478 df-ats 39269 df-lines 39504 df-pmap 39507 | 
| This theorem is referenced by: cdleme3h 40238 cdleme7ga 40251 | 
| Copyright terms: Public domain | W3C validator |