| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linepmap | Structured version Visualization version GIF version | ||
| Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.) |
| Ref | Expression |
|---|---|
| isline2.j | ⊢ ∨ = (join‘𝐾) |
| isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
| isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| linepmap | ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | isline2.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39255 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (Base‘𝐾)) |
| 7 | simpl3 1194 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
| 8 | 3, 4 | atbase 39255 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (Base‘𝐾)) |
| 10 | isline2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 3, 10 | latjcl 18374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 12 | 1, 6, 9, 11 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 13 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 14 | isline2.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 15 | 3, 13, 4, 14 | pmapval 39724 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) |
| 16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) |
| 17 | eqid 2729 | . . 3 ⊢ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} | |
| 18 | isline2.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
| 19 | 13, 10, 4, 18 | islinei 39707 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)})) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) |
| 20 | 17, 19 | mpanr2 704 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) |
| 21 | 16, 20 | eqeltrd 2828 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 Latclat 18366 Atomscatm 39229 Linesclines 39461 pmapcpmap 39464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-lat 18367 df-ats 39233 df-lines 39468 df-pmap 39471 |
| This theorem is referenced by: cdleme3h 40202 cdleme7ga 40215 |
| Copyright terms: Public domain | W3C validator |