Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepmap Structured version   Visualization version   GIF version

Theorem linepmap 37716
Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.)
Hypotheses
Ref Expression
isline2.j = (join‘𝐾)
isline2.a 𝐴 = (Atoms‘𝐾)
isline2.n 𝑁 = (Lines‘𝐾)
isline2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
linepmap (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) ∈ 𝑁)

Proof of Theorem linepmap
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1189 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
2 simpl2 1190 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
3 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 isline2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4atbase 37230 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
7 simpl3 1191 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
83, 4atbase 37230 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
97, 8syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
10 isline2.j . . . . 5 = (join‘𝐾)
113, 10latjcl 18072 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
121, 6, 9, 11syl3anc 1369 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
13 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
14 isline2.m . . . 4 𝑀 = (pmap‘𝐾)
153, 13, 4, 14pmapval 37698 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑀‘(𝑃 𝑄)) = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})
161, 12, 15syl2anc 583 . 2 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})
17 eqid 2738 . . 3 {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)}
18 isline2.n . . . 4 𝑁 = (Lines‘𝐾)
1913, 10, 4, 18islinei 37681 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄 ∧ {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})) → {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} ∈ 𝑁)
2017, 19mpanr2 700 . 2 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} ∈ 𝑁)
2116, 20eqeltrd 2839 1 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  Linesclines 37435  pmapcpmap 37438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065  df-ats 37208  df-lines 37442  df-pmap 37445
This theorem is referenced by:  cdleme3h  38176  cdleme7ga  38189
  Copyright terms: Public domain W3C validator