Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepmap Structured version   Visualization version   GIF version

Theorem linepmap 39742
Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.)
Hypotheses
Ref Expression
isline2.j = (join‘𝐾)
isline2.a 𝐴 = (Atoms‘𝐾)
isline2.n 𝑁 = (Lines‘𝐾)
isline2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
linepmap (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) ∈ 𝑁)

Proof of Theorem linepmap
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
2 simpl2 1193 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
3 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 isline2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4atbase 39255 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
7 simpl3 1194 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
83, 4atbase 39255 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
97, 8syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
10 isline2.j . . . . 5 = (join‘𝐾)
113, 10latjcl 18374 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
121, 6, 9, 11syl3anc 1373 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
13 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
14 isline2.m . . . 4 𝑀 = (pmap‘𝐾)
153, 13, 4, 14pmapval 39724 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑀‘(𝑃 𝑄)) = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})
161, 12, 15syl2anc 584 . 2 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})
17 eqid 2729 . . 3 {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)}
18 isline2.n . . . 4 𝑁 = (Lines‘𝐾)
1913, 10, 4, 18islinei 39707 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄 ∧ {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})) → {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} ∈ 𝑁)
2017, 19mpanr2 704 . 2 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} ∈ 𝑁)
2116, 20eqeltrd 2828 1 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3402   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  Latclat 18366  Atomscatm 39229  Linesclines 39461  pmapcpmap 39464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-lat 18367  df-ats 39233  df-lines 39468  df-pmap 39471
This theorem is referenced by:  cdleme3h  40202  cdleme7ga  40215
  Copyright terms: Public domain W3C validator