| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linepmap | Structured version Visualization version GIF version | ||
| Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.) |
| Ref | Expression |
|---|---|
| isline2.j | ⊢ ∨ = (join‘𝐾) |
| isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
| isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| linepmap | ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝐾 ∈ Lat) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ 𝐴) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | isline2.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39282 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (Base‘𝐾)) |
| 7 | simpl3 1194 | . . . . 5 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ 𝐴) | |
| 8 | 3, 4 | atbase 39282 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (Base‘𝐾)) |
| 10 | isline2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 3, 10 | latjcl 18398 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 12 | 1, 6, 9, 11 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 13 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 14 | isline2.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 15 | 3, 13, 4, 14 | pmapval 39751 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) |
| 16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)}) |
| 17 | eqid 2729 | . . 3 ⊢ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} | |
| 18 | isline2.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
| 19 | 13, 10, 4, 18 | islinei 39734 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)})) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) |
| 20 | 17, 19 | mpanr2 704 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)} ∈ 𝑁) |
| 21 | 16, 20 | eqeltrd 2828 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑀‘(𝑃 ∨ 𝑄)) ∈ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 joincjn 18272 Latclat 18390 Atomscatm 39256 Linesclines 39488 pmapcpmap 39491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 df-ats 39260 df-lines 39495 df-pmap 39498 |
| This theorem is referenced by: cdleme3h 40229 cdleme7ga 40242 |
| Copyright terms: Public domain | W3C validator |