Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepmap Structured version   Visualization version   GIF version

Theorem linepmap 35938
Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012.)
Hypotheses
Ref Expression
isline2.j = (join‘𝐾)
isline2.a 𝐴 = (Atoms‘𝐾)
isline2.n 𝑁 = (Lines‘𝐾)
isline2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
linepmap (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) ∈ 𝑁)

Proof of Theorem linepmap
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1199 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ Lat)
2 simpl2 1201 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
3 eqid 2778 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 isline2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
53, 4atbase 35452 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
62, 5syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃 ∈ (Base‘𝐾))
7 simpl3 1203 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
83, 4atbase 35452 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
97, 8syl 17 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄 ∈ (Base‘𝐾))
10 isline2.j . . . . 5 = (join‘𝐾)
113, 10latjcl 17448 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
121, 6, 9, 11syl3anc 1439 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
13 eqid 2778 . . . 4 (le‘𝐾) = (le‘𝐾)
14 isline2.m . . . 4 𝑀 = (pmap‘𝐾)
153, 13, 4, 14pmapval 35920 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑀‘(𝑃 𝑄)) = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})
161, 12, 15syl2anc 579 . 2 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})
17 eqid 2778 . . 3 {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)}
18 isline2.n . . . 4 𝑁 = (Lines‘𝐾)
1913, 10, 4, 18islinei 35903 . . 3 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄 ∧ {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} = {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)})) → {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} ∈ 𝑁)
2017, 19mpanr2 694 . 2 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → {𝑟𝐴𝑟(le‘𝐾)(𝑃 𝑄)} ∈ 𝑁)
2116, 20eqeltrd 2859 1 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑀‘(𝑃 𝑄)) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  {crab 3094   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16266  lecple 16356  joincjn 17341  Latclat 17442  Atomscatm 35426  Linesclines 35657  pmapcpmap 35660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-lat 17443  df-ats 35430  df-lines 35664  df-pmap 35667
This theorem is referenced by:  cdleme3h  36398  cdleme7ga  36411
  Copyright terms: Public domain W3C validator