![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blssec | Structured version Visualization version GIF version |
Description: A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 24412 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
Ref | Expression |
---|---|
blssec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfge 13159 | . . . . 5 ⊢ (𝑆 ∈ ℝ* → 𝑆 ≤ +∞) | |
2 | 1 | adantl 480 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → 𝑆 ≤ +∞) |
3 | pnfxr 11314 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
4 | ssbl 24412 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝑆 ≤ +∞) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) | |
5 | 4 | 3expia 1118 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*)) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
6 | 3, 5 | mpanr2 702 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
7 | 2, 6 | mpd 15 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
8 | 7 | 3impa 1107 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
9 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
10 | 9 | xmetec 24423 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
11 | 10 | 3adant3 1129 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
12 | 8, 11 | sseqtrrd 4020 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3946 class class class wbr 5152 ◡ccnv 5680 “ cima 5684 ‘cfv 6553 (class class class)co 7423 [cec 8731 ℝcr 11153 +∞cpnf 11291 ℝ*cxr 11293 ≤ cle 11295 ∞Metcxmet 21320 ballcbl 21322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-1st 8002 df-2nd 8003 df-er 8733 df-ec 8735 df-map 8856 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-2 12322 df-rp 13024 df-xneg 13141 df-xadd 13142 df-xmul 13143 df-psmet 21327 df-xmet 21328 df-bl 21330 |
This theorem is referenced by: xmetresbl 24426 xrsblre 24810 isbndx 37431 |
Copyright terms: Public domain | W3C validator |