MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssec Structured version   Visualization version   GIF version

Theorem blssec 22648
Description: A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 22636 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
blssec ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] )

Proof of Theorem blssec
StepHypRef Expression
1 pnfge 12275 . . . . 5 (𝑆 ∈ ℝ*𝑆 ≤ +∞)
21adantl 475 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑆 ∈ ℝ*) → 𝑆 ≤ +∞)
3 pnfxr 10430 . . . . 5 +∞ ∈ ℝ*
4 ssbl 22636 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝑆 ≤ +∞) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))
543expia 1111 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*)) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)))
63, 5mpanr2 694 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)))
72, 6mpd 15 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))
873impa 1097 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))
9 xmeter.1 . . . 4 = (𝐷 “ ℝ)
109xmetec 22647 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))
11103adant3 1123 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → [𝑃] = (𝑃(ball‘𝐷)+∞))
128, 11sseqtr4d 3861 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wss 3792   class class class wbr 4886  ccnv 5354  cima 5358  cfv 6135  (class class class)co 6922  [cec 8024  cr 10271  +∞cpnf 10408  *cxr 10410  cle 10412  ∞Metcxmet 20127  ballcbl 20129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-ec 8028  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-2 11438  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-psmet 20134  df-xmet 20135  df-bl 20137
This theorem is referenced by:  xmetresbl  22650  xrsblre  23022  isbndx  34207
  Copyright terms: Public domain W3C validator