![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blssec | Structured version Visualization version GIF version |
Description: A ball centered at π is contained in the set of points finitely separated from π. This is just an application of ssbl 24273 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | β’ βΌ = (β‘π· β β) |
Ref | Expression |
---|---|
blssec | β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π) β [π] βΌ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfge 13111 | . . . . 5 β’ (π β β* β π β€ +β) | |
2 | 1 | adantl 481 | . . . 4 β’ (((π· β (βMetβπ) β§ π β π) β§ π β β*) β π β€ +β) |
3 | pnfxr 11267 | . . . . 5 β’ +β β β* | |
4 | ssbl 24273 | . . . . . 6 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ +β β β*) β§ π β€ +β) β (π(ballβπ·)π) β (π(ballβπ·)+β)) | |
5 | 4 | 3expia 1118 | . . . . 5 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ +β β β*)) β (π β€ +β β (π(ballβπ·)π) β (π(ballβπ·)+β))) |
6 | 3, 5 | mpanr2 701 | . . . 4 β’ (((π· β (βMetβπ) β§ π β π) β§ π β β*) β (π β€ +β β (π(ballβπ·)π) β (π(ballβπ·)+β))) |
7 | 2, 6 | mpd 15 | . . 3 β’ (((π· β (βMetβπ) β§ π β π) β§ π β β*) β (π(ballβπ·)π) β (π(ballβπ·)+β)) |
8 | 7 | 3impa 1107 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π) β (π(ballβπ·)+β)) |
9 | xmeter.1 | . . . 4 β’ βΌ = (β‘π· β β) | |
10 | 9 | xmetec 24284 | . . 3 β’ ((π· β (βMetβπ) β§ π β π) β [π] βΌ = (π(ballβπ·)+β)) |
11 | 10 | 3adant3 1129 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β [π] βΌ = (π(ballβπ·)+β)) |
12 | 8, 11 | sseqtrrd 4016 | 1 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π) β [π] βΌ ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3941 class class class wbr 5139 β‘ccnv 5666 β cima 5670 βcfv 6534 (class class class)co 7402 [cec 8698 βcr 11106 +βcpnf 11244 β*cxr 11246 β€ cle 11248 βMetcxmet 21219 ballcbl 21221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-er 8700 df-ec 8702 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-2 12274 df-rp 12976 df-xneg 13093 df-xadd 13094 df-xmul 13095 df-psmet 21226 df-xmet 21227 df-bl 21229 |
This theorem is referenced by: xmetresbl 24287 xrsblre 24671 isbndx 37154 |
Copyright terms: Public domain | W3C validator |