![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blssec | Structured version Visualization version GIF version |
Description: A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 23772 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
Ref | Expression |
---|---|
blssec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfge 13048 | . . . . 5 ⊢ (𝑆 ∈ ℝ* → 𝑆 ≤ +∞) | |
2 | 1 | adantl 482 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → 𝑆 ≤ +∞) |
3 | pnfxr 11206 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
4 | ssbl 23772 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝑆 ≤ +∞) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) | |
5 | 4 | 3expia 1121 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ*)) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
6 | 3, 5 | mpanr2 702 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑆 ≤ +∞ → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞))) |
7 | 2, 6 | mpd 15 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
8 | 7 | 3impa 1110 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ (𝑃(ball‘𝐷)+∞)) |
9 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
10 | 9 | xmetec 23783 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
12 | 8, 11 | sseqtrrd 3984 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3909 class class class wbr 5104 ◡ccnv 5631 “ cima 5635 ‘cfv 6494 (class class class)co 7354 [cec 8643 ℝcr 11047 +∞cpnf 11183 ℝ*cxr 11185 ≤ cle 11187 ∞Metcxmet 20777 ballcbl 20779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5530 df-po 5544 df-so 5545 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7918 df-2nd 7919 df-er 8645 df-ec 8647 df-map 8764 df-en 8881 df-dom 8882 df-sdom 8883 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-div 11810 df-2 12213 df-rp 12913 df-xneg 13030 df-xadd 13031 df-xmul 13032 df-psmet 20784 df-xmet 20785 df-bl 20787 |
This theorem is referenced by: xmetresbl 23786 xrsblre 24170 isbndx 36230 |
Copyright terms: Public domain | W3C validator |