MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocnilem Structured version   Visualization version   GIF version

Theorem blocnilem 30740
Description: Lemma for blocni 30741 and lnocni 30742. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
blocnilem.1 𝑋 = (BaseSet‘𝑈)
Assertion
Ref Expression
blocnilem ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)

Proof of Theorem blocnilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . . . 6 𝑈 ∈ NrmCVec
2 blocnilem.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 blocni.8 . . . . . . 7 𝐶 = (IndMet‘𝑈)
42, 3imsxmet 30628 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
51, 4ax-mp 5 . . . . 5 𝐶 ∈ (∞Met‘𝑋)
6 blocni.w . . . . . 6 𝑊 ∈ NrmCVec
7 eqid 2730 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 blocni.d . . . . . . 7 𝐷 = (IndMet‘𝑊)
97, 8imsxmet 30628 . . . . . 6 (𝑊 ∈ NrmCVec → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
106, 9ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
11 1rp 12962 . . . . . 6 1 ∈ ℝ+
12 blocni.j . . . . . . 7 𝐽 = (MetOpen‘𝐶)
13 blocni.k . . . . . . 7 𝐾 = (MetOpen‘𝐷)
1412, 13metcnpi3 24441 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 1 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
1511, 14mpanr2 704 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
165, 10, 15mpanl12 702 . . . 4 (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
17 rpreccl 12986 . . . . . . . 8 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
1817rpred 13002 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ)
1918ad2antlr 727 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → (1 / 𝑦) ∈ ℝ)
20 eqid 2730 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
21 eqid 2730 . . . . . . . . . . . . . . 15 (normCV𝑈) = (normCV𝑈)
222, 20, 21, 3imsdval 30622 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
231, 22mp3an1 1450 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
2423breq1d 5120 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → ((𝑥𝐶𝑃) ≤ 𝑦 ↔ ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦))
25 blocni.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
26 blocni.4 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
272, 7, 26lnof 30691 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
281, 6, 25, 27mp3an 1463 . . . . . . . . . . . . . . . 16 𝑇:𝑋⟶(BaseSet‘𝑊)
2928ffvelcdmi 7058 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ (BaseSet‘𝑊))
3028ffvelcdmi 7058 . . . . . . . . . . . . . . 15 (𝑃𝑋 → (𝑇𝑃) ∈ (BaseSet‘𝑊))
31 eqid 2730 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
32 eqid 2730 . . . . . . . . . . . . . . . . 17 (normCV𝑊) = (normCV𝑊)
337, 31, 32, 8imsdval 30622 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
346, 33mp3an1 1450 . . . . . . . . . . . . . . 15 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
3529, 30, 34syl2an 596 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
361, 6, 253pm3.2i 1340 . . . . . . . . . . . . . . . 16 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
372, 20, 31, 26lnosub 30695 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝑥𝑋𝑃𝑋)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3836, 37mpan 690 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑃𝑋) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3938fveq2d 6865 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
4035, 39eqtr4d 2768 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))))
4140breq1d 5120 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → (((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1))
4224, 41imbi12d 344 . . . . . . . . . . 11 ((𝑥𝑋𝑃𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4342ancoms 458 . . . . . . . . . 10 ((𝑃𝑋𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4443adantlr 715 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4544ralbidva 3155 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
46 2fveq3 6866 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑊)‘(𝑇𝑧)) = ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
47 fveq2 6861 . . . . . . . . . . . . 13 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
4847oveq2d 7406 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
4946, 48breq12d 5123 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈)))))
501a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑈 ∈ NrmCVec)
51 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑃𝑋)
52 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑋𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
532, 21nvcl 30597 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
541, 53mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ)
56 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0vec𝑈) = (0vec𝑈)
572, 56, 21nvgt0 30610 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
581, 57mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
5958biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → 0 < ((normCV𝑈)‘𝑧))
6055, 59elrpd 12999 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ+)
61 rpdivcl 12985 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6252, 60, 61syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6362rpcnd 13004 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ)
64 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑧𝑋)
65 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
662, 65nvscl 30562 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ NrmCVec ∧ (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
6750, 63, 64, 66syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
68 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 ( +𝑣𝑈) = ( +𝑣𝑈)
692, 68, 20nvpncan2 30589 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7050, 51, 67, 69syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7170fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
7262rprege0d 13009 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))))
732, 65, 21nvsge0 30600 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ 𝑧𝑋) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
7450, 72, 64, 73syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
75 rpcn 12969 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7675ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ∈ ℂ)
7754ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℝ)
7877recnd 11209 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℂ)
792, 56, 21nvz 30605 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
801, 79mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑋 → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
8180necon3bid 2970 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑋 → (((normCV𝑈)‘𝑧) ≠ 0 ↔ 𝑧 ≠ (0vec𝑈)))
8281biimpar 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ≠ 0)
8382adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ≠ 0)
8476, 78, 83divcan1d 11966 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)) = 𝑦)
8571, 74, 843eqtrd 2769 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = 𝑦)
86 rpre 12967 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
8786leidd 11751 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+𝑦𝑦)
8887ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦𝑦)
8985, 88eqbrtrd 5132 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦)
902, 68nvgcl 30556 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
9150, 51, 67, 90syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
92 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9392breq1d 5120 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 ↔ ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦))
94 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9594fveq2d 6865 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))))
9695breq1d 5120 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
9793, 96imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) ↔ (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9897rspcv 3587 . . . . . . . . . . . . . . . . 17 ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋 → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9991, 98syl 17 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
10089, 99mpid 44 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
10128ffvelcdmi 7058 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1027, 32nvcl 30597 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
1036, 101, 102sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑧𝑋 → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
104103ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
105 1red 11182 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 1 ∈ ℝ)
106104, 105, 62lemuldiv2d 13052 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
10770fveq2d 6865 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
108 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
1092, 65, 108, 26lnomul 30696 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋)) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11036, 109mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11163, 64, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
112107, 111eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
113112fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))))
1146a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑊 ∈ NrmCVec)
115101ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1167, 108, 32nvsge0 30600 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
117114, 72, 115, 116syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
118113, 117eqtrd 2765 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
119118breq1d 5120 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1))
120 rpcnne0 12977 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
121 rpcnne0 12977 . . . . . . . . . . . . . . . . . . . 20 (((normCV𝑈)‘𝑧) ∈ ℝ+ → (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0))
122 recdiv 11895 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0)) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
123120, 121, 122syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
12452, 60, 123syl2an 596 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
125 rpne0 12975 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ≠ 0)
126125ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ≠ 0)
12778, 76, 126divrec2d 11969 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑈)‘𝑧) / 𝑦) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
128124, 127eqtr2d 2766 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = (1 / (𝑦 / ((normCV𝑈)‘𝑧))))
129128breq2d 5122 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
130106, 119, 1293bitr4d 311 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
131100, 130sylibd 239 . . . . . . . . . . . . . 14 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
132131anassrs 467 . . . . . . . . . . . . 13 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
133132imp 406 . . . . . . . . . . . 12 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
134133an32s 652 . . . . . . . . . . 11 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) ∧ 𝑧 ≠ (0vec𝑈)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
135 eqid 2730 . . . . . . . . . . . . . . . . . 18 (0vec𝑊) = (0vec𝑊)
1362, 7, 56, 135, 26lno0 30692 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
1371, 6, 25, 136mp3an 1463 . . . . . . . . . . . . . . . 16 (𝑇‘(0vec𝑈)) = (0vec𝑊)
138137fveq2i 6864 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = ((normCV𝑊)‘(0vec𝑊))
139135, 32nvz0 30604 . . . . . . . . . . . . . . . 16 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
1406, 139ax-mp 5 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(0vec𝑊)) = 0
141138, 140eqtri 2753 . . . . . . . . . . . . . 14 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = 0
142 0le0 12294 . . . . . . . . . . . . . 14 0 ≤ 0
143141, 142eqbrtri 5131 . . . . . . . . . . . . 13 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ 0
14417rpcnd 13004 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℂ)
14556, 21nvz0 30604 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
1461, 145ax-mp 5 . . . . . . . . . . . . . . . 16 ((normCV𝑈)‘(0vec𝑈)) = 0
147146oveq2i 7401 . . . . . . . . . . . . . . 15 ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = ((1 / 𝑦) · 0)
148 mul01 11360 . . . . . . . . . . . . . . 15 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · 0) = 0)
149147, 148eqtrid 2777 . . . . . . . . . . . . . 14 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
150144, 149syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
151143, 150breqtrrid 5148 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
152151ad3antlr 731 . . . . . . . . . . 11 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
15349, 134, 152pm2.61ne 3011 . . . . . . . . . 10 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
154153ex 412 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
155154ralrimdva 3134 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
15645, 155sylbid 240 . . . . . . 7 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
157156imp 406 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
158 oveq1 7397 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (𝑥 · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
159158breq2d 5122 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
160159ralbidv 3157 . . . . . . 7 (𝑥 = (1 / 𝑦) → (∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
161160rspcev 3591 . . . . . 6 (((1 / 𝑦) ∈ ℝ ∧ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
16219, 157, 161syl2anc 584 . . . . 5 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
163162rexlimdva2 3137 . . . 4 (𝑃𝑋 → (∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16416, 163syl5 34 . . 3 (𝑃𝑋 → (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
165164imp 406 . 2 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
166 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
1672, 21, 32, 26, 166, 1, 6isblo3i 30737 . . 3 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16825, 167mpbiran 709 . 2 (𝑇𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
169165, 168sylibr 234 1 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  +crp 12958  ∞Metcxmet 21256  MetOpencmopn 21261   CnP ccnp 23119  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  0veccn0v 30524  𝑣 cnsb 30525  normCVcnmcv 30526  IndMetcims 30527   LnOp clno 30676   BLnOp cblo 30678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cnp 23122  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-lno 30680  df-nmoo 30681  df-blo 30682  df-0o 30683
This theorem is referenced by:  blocni  30741  lnocni  30742
  Copyright terms: Public domain W3C validator