MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocnilem Structured version   Visualization version   GIF version

Theorem blocnilem 29746
Description: Lemma for blocni 29747 and lnocni 29748. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
blocnilem.1 𝑋 = (BaseSet‘𝑈)
Assertion
Ref Expression
blocnilem ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)

Proof of Theorem blocnilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . . . 6 𝑈 ∈ NrmCVec
2 blocnilem.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 blocni.8 . . . . . . 7 𝐶 = (IndMet‘𝑈)
42, 3imsxmet 29634 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
51, 4ax-mp 5 . . . . 5 𝐶 ∈ (∞Met‘𝑋)
6 blocni.w . . . . . 6 𝑊 ∈ NrmCVec
7 eqid 2736 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 blocni.d . . . . . . 7 𝐷 = (IndMet‘𝑊)
97, 8imsxmet 29634 . . . . . 6 (𝑊 ∈ NrmCVec → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
106, 9ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
11 1rp 12919 . . . . . 6 1 ∈ ℝ+
12 blocni.j . . . . . . 7 𝐽 = (MetOpen‘𝐶)
13 blocni.k . . . . . . 7 𝐾 = (MetOpen‘𝐷)
1412, 13metcnpi3 23902 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 1 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
1511, 14mpanr2 702 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
165, 10, 15mpanl12 700 . . . 4 (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
17 rpreccl 12941 . . . . . . . 8 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
1817rpred 12957 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ)
1918ad2antlr 725 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → (1 / 𝑦) ∈ ℝ)
20 eqid 2736 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
21 eqid 2736 . . . . . . . . . . . . . . 15 (normCV𝑈) = (normCV𝑈)
222, 20, 21, 3imsdval 29628 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
231, 22mp3an1 1448 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
2423breq1d 5115 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → ((𝑥𝐶𝑃) ≤ 𝑦 ↔ ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦))
25 blocni.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
26 blocni.4 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
272, 7, 26lnof 29697 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
281, 6, 25, 27mp3an 1461 . . . . . . . . . . . . . . . 16 𝑇:𝑋⟶(BaseSet‘𝑊)
2928ffvelcdmi 7034 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ (BaseSet‘𝑊))
3028ffvelcdmi 7034 . . . . . . . . . . . . . . 15 (𝑃𝑋 → (𝑇𝑃) ∈ (BaseSet‘𝑊))
31 eqid 2736 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
32 eqid 2736 . . . . . . . . . . . . . . . . 17 (normCV𝑊) = (normCV𝑊)
337, 31, 32, 8imsdval 29628 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
346, 33mp3an1 1448 . . . . . . . . . . . . . . 15 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
3529, 30, 34syl2an 596 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
361, 6, 253pm3.2i 1339 . . . . . . . . . . . . . . . 16 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
372, 20, 31, 26lnosub 29701 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝑥𝑋𝑃𝑋)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3836, 37mpan 688 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑃𝑋) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3938fveq2d 6846 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
4035, 39eqtr4d 2779 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))))
4140breq1d 5115 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → (((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1))
4224, 41imbi12d 344 . . . . . . . . . . 11 ((𝑥𝑋𝑃𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4342ancoms 459 . . . . . . . . . 10 ((𝑃𝑋𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4443adantlr 713 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4544ralbidva 3172 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
46 2fveq3 6847 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑊)‘(𝑇𝑧)) = ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
47 fveq2 6842 . . . . . . . . . . . . 13 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
4847oveq2d 7373 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
4946, 48breq12d 5118 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈)))))
501a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑈 ∈ NrmCVec)
51 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑃𝑋)
52 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑋𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
532, 21nvcl 29603 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
541, 53mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
5554adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ)
56 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0vec𝑈) = (0vec𝑈)
572, 56, 21nvgt0 29616 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
581, 57mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
5958biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → 0 < ((normCV𝑈)‘𝑧))
6055, 59elrpd 12954 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ+)
61 rpdivcl 12940 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6252, 60, 61syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6362rpcnd 12959 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ)
64 simprl 769 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑧𝑋)
65 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
662, 65nvscl 29568 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ NrmCVec ∧ (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
6750, 63, 64, 66syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
68 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 ( +𝑣𝑈) = ( +𝑣𝑈)
692, 68, 20nvpncan2 29595 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7050, 51, 67, 69syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7170fveq2d 6846 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
7262rprege0d 12964 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))))
732, 65, 21nvsge0 29606 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ 𝑧𝑋) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
7450, 72, 64, 73syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
75 rpcn 12925 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7675ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ∈ ℂ)
7754ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℝ)
7877recnd 11183 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℂ)
792, 56, 21nvz 29611 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
801, 79mpan 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑋 → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
8180necon3bid 2988 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑋 → (((normCV𝑈)‘𝑧) ≠ 0 ↔ 𝑧 ≠ (0vec𝑈)))
8281biimpar 478 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ≠ 0)
8382adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ≠ 0)
8476, 78, 83divcan1d 11932 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)) = 𝑦)
8571, 74, 843eqtrd 2780 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = 𝑦)
86 rpre 12923 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
8786leidd 11721 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+𝑦𝑦)
8887ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦𝑦)
8985, 88eqbrtrd 5127 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦)
902, 68nvgcl 29562 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
9150, 51, 67, 90syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
92 fvoveq1 7380 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9392breq1d 5115 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 ↔ ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦))
94 fvoveq1 7380 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9594fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))))
9695breq1d 5115 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
9793, 96imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) ↔ (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9897rspcv 3577 . . . . . . . . . . . . . . . . 17 ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋 → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9991, 98syl 17 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
10089, 99mpid 44 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
10128ffvelcdmi 7034 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1027, 32nvcl 29603 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
1036, 101, 102sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑧𝑋 → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
104103ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
105 1red 11156 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 1 ∈ ℝ)
106104, 105, 62lemuldiv2d 13007 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
10770fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
108 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
1092, 65, 108, 26lnomul 29702 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋)) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11036, 109mpan 688 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11163, 64, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
112107, 111eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
113112fveq2d 6846 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))))
1146a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑊 ∈ NrmCVec)
115101ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1167, 108, 32nvsge0 29606 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
117114, 72, 115, 116syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
118113, 117eqtrd 2776 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
119118breq1d 5115 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1))
120 rpcnne0 12933 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
121 rpcnne0 12933 . . . . . . . . . . . . . . . . . . . 20 (((normCV𝑈)‘𝑧) ∈ ℝ+ → (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0))
122 recdiv 11861 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0)) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
123120, 121, 122syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
12452, 60, 123syl2an 596 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
125 rpne0 12931 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ≠ 0)
126125ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ≠ 0)
12778, 76, 126divrec2d 11935 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑈)‘𝑧) / 𝑦) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
128124, 127eqtr2d 2777 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = (1 / (𝑦 / ((normCV𝑈)‘𝑧))))
129128breq2d 5117 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
130106, 119, 1293bitr4d 310 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
131100, 130sylibd 238 . . . . . . . . . . . . . 14 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
132131anassrs 468 . . . . . . . . . . . . 13 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
133132imp 407 . . . . . . . . . . . 12 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
134133an32s 650 . . . . . . . . . . 11 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) ∧ 𝑧 ≠ (0vec𝑈)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
135 eqid 2736 . . . . . . . . . . . . . . . . . 18 (0vec𝑊) = (0vec𝑊)
1362, 7, 56, 135, 26lno0 29698 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
1371, 6, 25, 136mp3an 1461 . . . . . . . . . . . . . . . 16 (𝑇‘(0vec𝑈)) = (0vec𝑊)
138137fveq2i 6845 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = ((normCV𝑊)‘(0vec𝑊))
139135, 32nvz0 29610 . . . . . . . . . . . . . . . 16 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
1406, 139ax-mp 5 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(0vec𝑊)) = 0
141138, 140eqtri 2764 . . . . . . . . . . . . . 14 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = 0
142 0le0 12254 . . . . . . . . . . . . . 14 0 ≤ 0
143141, 142eqbrtri 5126 . . . . . . . . . . . . 13 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ 0
14417rpcnd 12959 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℂ)
14556, 21nvz0 29610 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
1461, 145ax-mp 5 . . . . . . . . . . . . . . . 16 ((normCV𝑈)‘(0vec𝑈)) = 0
147146oveq2i 7368 . . . . . . . . . . . . . . 15 ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = ((1 / 𝑦) · 0)
148 mul01 11334 . . . . . . . . . . . . . . 15 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · 0) = 0)
149147, 148eqtrid 2788 . . . . . . . . . . . . . 14 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
150144, 149syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
151143, 150breqtrrid 5143 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
152151ad3antlr 729 . . . . . . . . . . 11 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
15349, 134, 152pm2.61ne 3030 . . . . . . . . . 10 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
154153ex 413 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
155154ralrimdva 3151 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
15645, 155sylbid 239 . . . . . . 7 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
157156imp 407 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
158 oveq1 7364 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (𝑥 · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
159158breq2d 5117 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
160159ralbidv 3174 . . . . . . 7 (𝑥 = (1 / 𝑦) → (∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
161160rspcev 3581 . . . . . 6 (((1 / 𝑦) ∈ ℝ ∧ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
16219, 157, 161syl2anc 584 . . . . 5 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
163162rexlimdva2 3154 . . . 4 (𝑃𝑋 → (∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16416, 163syl5 34 . . 3 (𝑃𝑋 → (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
165164imp 407 . 2 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
166 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
1672, 21, 32, 26, 166, 1, 6isblo3i 29743 . . 3 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16825, 167mpbiran 707 . 2 (𝑇𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
169165, 168sylibr 233 1 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  +crp 12915  ∞Metcxmet 20781  MetOpencmopn 20786   CnP ccnp 22576  NrmCVeccnv 29526   +𝑣 cpv 29527  BaseSetcba 29528   ·𝑠OLD cns 29529  0veccn0v 29530  𝑣 cnsb 29531  normCVcnmcv 29532  IndMetcims 29533   LnOp clno 29682   BLnOp cblo 29684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cnp 22579  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-lno 29686  df-nmoo 29687  df-blo 29688  df-0o 29689
This theorem is referenced by:  blocni  29747  lnocni  29748
  Copyright terms: Public domain W3C validator