Step | Hyp | Ref
| Expression |
1 | | blocni.u |
. . . . . 6
β’ π β NrmCVec |
2 | | blocnilem.1 |
. . . . . . 7
β’ π = (BaseSetβπ) |
3 | | blocni.8 |
. . . . . . 7
β’ πΆ = (IndMetβπ) |
4 | 2, 3 | imsxmet 29945 |
. . . . . 6
β’ (π β NrmCVec β πΆ β (βMetβπ)) |
5 | 1, 4 | ax-mp 5 |
. . . . 5
β’ πΆ β (βMetβπ) |
6 | | blocni.w |
. . . . . 6
β’ π β NrmCVec |
7 | | eqid 2733 |
. . . . . . 7
β’
(BaseSetβπ) =
(BaseSetβπ) |
8 | | blocni.d |
. . . . . . 7
β’ π· = (IndMetβπ) |
9 | 7, 8 | imsxmet 29945 |
. . . . . 6
β’ (π β NrmCVec β π· β
(βMetβ(BaseSetβπ))) |
10 | 6, 9 | ax-mp 5 |
. . . . 5
β’ π· β
(βMetβ(BaseSetβπ)) |
11 | | 1rp 12978 |
. . . . . 6
β’ 1 β
β+ |
12 | | blocni.j |
. . . . . . 7
β’ π½ = (MetOpenβπΆ) |
13 | | blocni.k |
. . . . . . 7
β’ πΎ = (MetOpenβπ·) |
14 | 12, 13 | metcnpi3 24055 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π· β
(βMetβ(BaseSetβπ))) β§ (π β ((π½ CnP πΎ)βπ) β§ 1 β β+))
β βπ¦ β
β+ βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1)) |
15 | 11, 14 | mpanr2 703 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π· β
(βMetβ(BaseSetβπ))) β§ π β ((π½ CnP πΎ)βπ)) β βπ¦ β β+ βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1)) |
16 | 5, 10, 15 | mpanl12 701 |
. . . 4
β’ (π β ((π½ CnP πΎ)βπ) β βπ¦ β β+ βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1)) |
17 | | rpreccl 13000 |
. . . . . . . 8
β’ (π¦ β β+
β (1 / π¦) β
β+) |
18 | 17 | rpred 13016 |
. . . . . . 7
β’ (π¦ β β+
β (1 / π¦) β
β) |
19 | 18 | ad2antlr 726 |
. . . . . 6
β’ (((π β π β§ π¦ β β+) β§
βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1)) β (1 / π¦) β β) |
20 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’ (
βπ£ βπ) = ( βπ£
βπ) |
21 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(normCVβπ) = (normCVβπ) |
22 | 2, 20, 21, 3 | imsdval 29939 |
. . . . . . . . . . . . . 14
β’ ((π β NrmCVec β§ π₯ β π β§ π β π) β (π₯πΆπ) = ((normCVβπ)β(π₯( βπ£ βπ)π))) |
23 | 1, 22 | mp3an1 1449 |
. . . . . . . . . . . . 13
β’ ((π₯ β π β§ π β π) β (π₯πΆπ) = ((normCVβπ)β(π₯( βπ£ βπ)π))) |
24 | 23 | breq1d 5159 |
. . . . . . . . . . . 12
β’ ((π₯ β π β§ π β π) β ((π₯πΆπ) β€ π¦ β ((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦)) |
25 | | blocni.l |
. . . . . . . . . . . . . . . . 17
β’ π β πΏ |
26 | | blocni.4 |
. . . . . . . . . . . . . . . . . 18
β’ πΏ = (π LnOp π) |
27 | 2, 7, 26 | lnof 30008 |
. . . . . . . . . . . . . . . . 17
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π:πβΆ(BaseSetβπ)) |
28 | 1, 6, 25, 27 | mp3an 1462 |
. . . . . . . . . . . . . . . 16
β’ π:πβΆ(BaseSetβπ) |
29 | 28 | ffvelcdmi 7086 |
. . . . . . . . . . . . . . 15
β’ (π₯ β π β (πβπ₯) β (BaseSetβπ)) |
30 | 28 | ffvelcdmi 7086 |
. . . . . . . . . . . . . . 15
β’ (π β π β (πβπ) β (BaseSetβπ)) |
31 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’ (
βπ£ βπ) = ( βπ£
βπ) |
32 | | eqid 2733 |
. . . . . . . . . . . . . . . . 17
β’
(normCVβπ) = (normCVβπ) |
33 | 7, 31, 32, 8 | imsdval 29939 |
. . . . . . . . . . . . . . . 16
β’ ((π β NrmCVec β§ (πβπ₯) β (BaseSetβπ) β§ (πβπ) β (BaseSetβπ)) β ((πβπ₯)π·(πβπ)) = ((normCVβπ)β((πβπ₯)( βπ£ βπ)(πβπ)))) |
34 | 6, 33 | mp3an1 1449 |
. . . . . . . . . . . . . . 15
β’ (((πβπ₯) β (BaseSetβπ) β§ (πβπ) β (BaseSetβπ)) β ((πβπ₯)π·(πβπ)) = ((normCVβπ)β((πβπ₯)( βπ£ βπ)(πβπ)))) |
35 | 29, 30, 34 | syl2an 597 |
. . . . . . . . . . . . . 14
β’ ((π₯ β π β§ π β π) β ((πβπ₯)π·(πβπ)) = ((normCVβπ)β((πβπ₯)( βπ£ βπ)(πβπ)))) |
36 | 1, 6, 25 | 3pm3.2i 1340 |
. . . . . . . . . . . . . . . 16
β’ (π β NrmCVec β§ π β NrmCVec β§ π β πΏ) |
37 | 2, 20, 31, 26 | lnosub 30012 |
. . . . . . . . . . . . . . . 16
β’ (((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β§ (π₯ β π β§ π β π)) β (πβ(π₯( βπ£ βπ)π)) = ((πβπ₯)( βπ£ βπ)(πβπ))) |
38 | 36, 37 | mpan 689 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β π β§ π β π) β (πβ(π₯( βπ£ βπ)π)) = ((πβπ₯)( βπ£ βπ)(πβπ))) |
39 | 38 | fveq2d 6896 |
. . . . . . . . . . . . . 14
β’ ((π₯ β π β§ π β π) β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) = ((normCVβπ)β((πβπ₯)( βπ£ βπ)(πβπ)))) |
40 | 35, 39 | eqtr4d 2776 |
. . . . . . . . . . . . 13
β’ ((π₯ β π β§ π β π) β ((πβπ₯)π·(πβπ)) = ((normCVβπ)β(πβ(π₯( βπ£ βπ)π)))) |
41 | 40 | breq1d 5159 |
. . . . . . . . . . . 12
β’ ((π₯ β π β§ π β π) β (((πβπ₯)π·(πβπ)) β€ 1 β
((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1)) |
42 | 24, 41 | imbi12d 345 |
. . . . . . . . . . 11
β’ ((π₯ β π β§ π β π) β (((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1) β
(((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1))) |
43 | 42 | ancoms 460 |
. . . . . . . . . 10
β’ ((π β π β§ π₯ β π) β (((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1) β
(((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1))) |
44 | 43 | adantlr 714 |
. . . . . . . . 9
β’ (((π β π β§ π¦ β β+) β§ π₯ β π) β (((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1) β
(((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1))) |
45 | 44 | ralbidva 3176 |
. . . . . . . 8
β’ ((π β π β§ π¦ β β+) β
(βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1) β βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1))) |
46 | | 2fveq3 6897 |
. . . . . . . . . . . 12
β’ (π§ = (0vecβπ) β
((normCVβπ)β(πβπ§)) = ((normCVβπ)β(πβ(0vecβπ)))) |
47 | | fveq2 6892 |
. . . . . . . . . . . . 13
β’ (π§ = (0vecβπ) β
((normCVβπ)βπ§) = ((normCVβπ)β(0vecβπ))) |
48 | 47 | oveq2d 7425 |
. . . . . . . . . . . 12
β’ (π§ = (0vecβπ) β ((1 / π¦) Β·
((normCVβπ)βπ§)) = ((1 / π¦) Β· ((normCVβπ)β(0vecβπ)))) |
49 | 46, 48 | breq12d 5162 |
. . . . . . . . . . 11
β’ (π§ = (0vecβπ) β
(((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)) β ((normCVβπ)β(πβ(0vecβπ))) β€ ((1 / π¦) Β·
((normCVβπ)β(0vecβπ))))) |
50 | 1 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β π β NrmCVec) |
51 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β π β π) |
52 | | simpr 486 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β π β§ π¦ β β+) β π¦ β
β+) |
53 | 2, 21 | nvcl 29914 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π β NrmCVec β§ π§ β π) β ((normCVβπ)βπ§) β β) |
54 | 1, 53 | mpan 689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π§ β π β ((normCVβπ)βπ§) β β) |
55 | 54 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π§ β π β§ π§ β (0vecβπ)) β
((normCVβπ)βπ§) β β) |
56 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
(0vecβπ) = (0vecβπ) |
57 | 2, 56, 21 | nvgt0 29927 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π β NrmCVec β§ π§ β π) β (π§ β (0vecβπ) β 0 <
((normCVβπ)βπ§))) |
58 | 1, 57 | mpan 689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π§ β π β (π§ β (0vecβπ) β 0 <
((normCVβπ)βπ§))) |
59 | 58 | biimpa 478 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π§ β π β§ π§ β (0vecβπ)) β 0 <
((normCVβπ)βπ§)) |
60 | 55, 59 | elrpd 13013 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π§ β π β§ π§ β (0vecβπ)) β
((normCVβπ)βπ§) β
β+) |
61 | | rpdivcl 12999 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π¦ β β+
β§ ((normCVβπ)βπ§) β β+) β (π¦ /
((normCVβπ)βπ§)) β
β+) |
62 | 52, 60, 61 | syl2an 597 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (π¦ / ((normCVβπ)βπ§)) β
β+) |
63 | 62 | rpcnd 13018 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (π¦ / ((normCVβπ)βπ§)) β β) |
64 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β π§ β π) |
65 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
66 | 2, 65 | nvscl 29879 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β NrmCVec β§ (π¦ /
((normCVβπ)βπ§)) β β β§ π§ β π) β ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§) β π) |
67 | 50, 63, 64, 66 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§) β π) |
68 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (
+π£ βπ) = ( +π£ βπ) |
69 | 2, 68, 20 | nvpncan2 29906 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β NrmCVec β§ π β π β§ ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§) β π) β ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π) = ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) |
70 | 50, 51, 67, 69 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π) = ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) |
71 | 70 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) = ((normCVβπ)β((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))) |
72 | 62 | rprege0d 13023 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β ((π¦ / ((normCVβπ)βπ§)) β β β§ 0 β€ (π¦ /
((normCVβπ)βπ§)))) |
73 | 2, 65, 21 | nvsge0 29917 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β NrmCVec β§ ((π¦ /
((normCVβπ)βπ§)) β β β§ 0 β€ (π¦ /
((normCVβπ)βπ§))) β§ π§ β π) β ((normCVβπ)β((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) = ((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)βπ§))) |
74 | 50, 72, 64, 73 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) = ((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)βπ§))) |
75 | | rpcn 12984 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ β β+
β π¦ β
β) |
76 | 75 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β π¦ β β) |
77 | 54 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)βπ§) β β) |
78 | 77 | recnd 11242 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)βπ§) β β) |
79 | 2, 56, 21 | nvz 29922 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β NrmCVec β§ π§ β π) β (((normCVβπ)βπ§) = 0 β π§ = (0vecβπ))) |
80 | 1, 79 | mpan 689 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π§ β π β (((normCVβπ)βπ§) = 0 β π§ = (0vecβπ))) |
81 | 80 | necon3bid 2986 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π§ β π β (((normCVβπ)βπ§) β 0 β π§ β (0vecβπ))) |
82 | 81 | biimpar 479 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π§ β π β§ π§ β (0vecβπ)) β
((normCVβπ)βπ§) β 0) |
83 | 82 | adantl 483 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)βπ§) β 0) |
84 | 76, 78, 83 | divcan1d 11991 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β ((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)βπ§)) = π¦) |
85 | 71, 74, 84 | 3eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) = π¦) |
86 | | rpre 12982 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ β β+
β π¦ β
β) |
87 | 86 | leidd 11780 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β β+
β π¦ β€ π¦) |
88 | 87 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β π¦ β€ π¦) |
89 | 85, 88 | eqbrtrd 5171 |
. . . . . . . . . . . . . . . 16
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) β€ π¦) |
90 | 2, 68 | nvgcl 29873 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β NrmCVec β§ π β π β§ ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§) β π) β (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β π) |
91 | 50, 51, 67, 90 | syl3anc 1372 |
. . . . . . . . . . . . . . . . 17
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β π) |
92 | | fvoveq1 7432 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ = (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β ((normCVβπ)β(π₯( βπ£ βπ)π)) = ((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) |
93 | 92 | breq1d 5159 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ = (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) β€ π¦)) |
94 | | fvoveq1 7432 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π₯ = (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β (πβ(π₯( βπ£ βπ)π)) = (πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) |
95 | 94 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ = (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) = ((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)))) |
96 | 95 | breq1d 5159 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ = (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β (((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1 β
((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) β€ 1)) |
97 | 93, 96 | imbi12d 345 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ = (π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β ((((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β
(((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) β€ 1))) |
98 | 97 | rspcv 3609 |
. . . . . . . . . . . . . . . . 17
β’ ((π( +π£
βπ)((π¦ /
((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) β π β (βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β
(((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) β€ 1))) |
99 | 91, 98 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β
(((normCVβπ)β((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) β€ 1))) |
100 | 89, 99 | mpid 44 |
. . . . . . . . . . . . . . 15
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β
((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) β€ 1)) |
101 | 28 | ffvelcdmi 7086 |
. . . . . . . . . . . . . . . . . . 19
β’ (π§ β π β (πβπ§) β (BaseSetβπ)) |
102 | 7, 32 | nvcl 29914 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β NrmCVec β§ (πβπ§) β (BaseSetβπ)) β ((normCVβπ)β(πβπ§)) β β) |
103 | 6, 101, 102 | sylancr 588 |
. . . . . . . . . . . . . . . . . 18
β’ (π§ β π β ((normCVβπ)β(πβπ§)) β β) |
104 | 103 | ad2antrl 727 |
. . . . . . . . . . . . . . . . 17
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β(πβπ§)) β β) |
105 | | 1red 11215 |
. . . . . . . . . . . . . . . . 17
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β 1 β
β) |
106 | 104, 105,
62 | lemuldiv2d 13066 |
. . . . . . . . . . . . . . . 16
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)β(πβπ§))) β€ 1 β
((normCVβπ)β(πβπ§)) β€ (1 / (π¦ / ((normCVβπ)βπ§))))) |
107 | 70 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) = (πβ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))) |
108 | | eqid 2733 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
109 | 2, 65, 108, 26 | lnomul 30013 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β§ ((π¦ / ((normCVβπ)βπ§)) β β β§ π§ β π)) β (πβ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) = ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)(πβπ§))) |
110 | 36, 109 | mpan 689 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π¦ /
((normCVβπ)βπ§)) β β β§ π§ β π) β (πβ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) = ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)(πβπ§))) |
111 | 63, 64, 110 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (πβ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§)) = ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)(πβπ§))) |
112 | 107, 111 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π)) = ((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)(πβπ§))) |
113 | 112 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) = ((normCVβπ)β((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)(πβπ§)))) |
114 | 6 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β π β NrmCVec) |
115 | 101 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (πβπ§) β (BaseSetβπ)) |
116 | 7, 108, 32 | nvsge0 29917 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β NrmCVec β§ ((π¦ /
((normCVβπ)βπ§)) β β β§ 0 β€ (π¦ /
((normCVβπ)βπ§))) β§ (πβπ§) β (BaseSetβπ)) β ((normCVβπ)β((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)(πβπ§))) = ((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)β(πβπ§)))) |
117 | 114, 72, 115, 116 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)(πβπ§))) = ((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)β(πβπ§)))) |
118 | 113, 117 | eqtrd 2773 |
. . . . . . . . . . . . . . . . 17
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) = ((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)β(πβπ§)))) |
119 | 118 | breq1d 5159 |
. . . . . . . . . . . . . . . 16
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
(((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) β€ 1 β ((π¦ / ((normCVβπ)βπ§)) Β· ((normCVβπ)β(πβπ§))) β€ 1)) |
120 | | rpcnne0 12992 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ β β+
β (π¦ β β
β§ π¦ β
0)) |
121 | | rpcnne0 12992 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((normCVβπ)βπ§) β β+ β
(((normCVβπ)βπ§) β β β§
((normCVβπ)βπ§) β 0)) |
122 | | recdiv 11920 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π¦ β β β§ π¦ β 0) β§
(((normCVβπ)βπ§) β β β§
((normCVβπ)βπ§) β 0)) β (1 / (π¦ / ((normCVβπ)βπ§))) = (((normCVβπ)βπ§) / π¦)) |
123 | 120, 121,
122 | syl2an 597 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π¦ β β+
β§ ((normCVβπ)βπ§) β β+) β (1 /
(π¦ /
((normCVβπ)βπ§))) = (((normCVβπ)βπ§) / π¦)) |
124 | 52, 60, 123 | syl2an 597 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (1 / (π¦ /
((normCVβπ)βπ§))) = (((normCVβπ)βπ§) / π¦)) |
125 | | rpne0 12990 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ β β+
β π¦ β
0) |
126 | 125 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β π¦ β 0) |
127 | 78, 76, 126 | divrec2d 11994 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
(((normCVβπ)βπ§) / π¦) = ((1 / π¦) Β· ((normCVβπ)βπ§))) |
128 | 124, 127 | eqtr2d 2774 |
. . . . . . . . . . . . . . . . 17
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β ((1 / π¦) Β·
((normCVβπ)βπ§)) = (1 / (π¦ / ((normCVβπ)βπ§)))) |
129 | 128 | breq2d 5161 |
. . . . . . . . . . . . . . . 16
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
(((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)) β ((normCVβπ)β(πβπ§)) β€ (1 / (π¦ / ((normCVβπ)βπ§))))) |
130 | 106, 119,
129 | 3bitr4d 311 |
. . . . . . . . . . . . . . 15
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β
(((normCVβπ)β(πβ((π( +π£ βπ)((π¦ / ((normCVβπ)βπ§))( Β·π OLD
βπ)π§))( βπ£ βπ)π))) β€ 1 β
((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
131 | 100, 130 | sylibd 238 |
. . . . . . . . . . . . . 14
β’ (((π β π β§ π¦ β β+) β§ (π§ β π β§ π§ β (0vecβπ))) β (βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β
((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
132 | 131 | anassrs 469 |
. . . . . . . . . . . . 13
β’ ((((π β π β§ π¦ β β+) β§ π§ β π) β§ π§ β (0vecβπ)) β (βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β
((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
133 | 132 | imp 408 |
. . . . . . . . . . . 12
β’
(((((π β π β§ π¦ β β+) β§ π§ β π) β§ π§ β (0vecβπ)) β§ βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1)) β
((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§))) |
134 | 133 | an32s 651 |
. . . . . . . . . . 11
β’
(((((π β π β§ π¦ β β+) β§ π§ β π) β§ βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1)) β§ π§ β (0vecβπ)) β
((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§))) |
135 | | eqid 2733 |
. . . . . . . . . . . . . . . . . 18
β’
(0vecβπ) = (0vecβπ) |
136 | 2, 7, 56, 135, 26 | lno0 30009 |
. . . . . . . . . . . . . . . . 17
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (πβ(0vecβπ)) =
(0vecβπ)) |
137 | 1, 6, 25, 136 | mp3an 1462 |
. . . . . . . . . . . . . . . 16
β’ (πβ(0vecβπ)) =
(0vecβπ) |
138 | 137 | fveq2i 6895 |
. . . . . . . . . . . . . . 15
β’
((normCVβπ)β(πβ(0vecβπ))) =
((normCVβπ)β(0vecβπ)) |
139 | 135, 32 | nvz0 29921 |
. . . . . . . . . . . . . . . 16
β’ (π β NrmCVec β
((normCVβπ)β(0vecβπ)) = 0) |
140 | 6, 139 | ax-mp 5 |
. . . . . . . . . . . . . . 15
β’
((normCVβπ)β(0vecβπ)) = 0 |
141 | 138, 140 | eqtri 2761 |
. . . . . . . . . . . . . 14
β’
((normCVβπ)β(πβ(0vecβπ))) = 0 |
142 | | 0le0 12313 |
. . . . . . . . . . . . . 14
β’ 0 β€
0 |
143 | 141, 142 | eqbrtri 5170 |
. . . . . . . . . . . . 13
β’
((normCVβπ)β(πβ(0vecβπ))) β€ 0 |
144 | 17 | rpcnd 13018 |
. . . . . . . . . . . . . 14
β’ (π¦ β β+
β (1 / π¦) β
β) |
145 | 56, 21 | nvz0 29921 |
. . . . . . . . . . . . . . . . 17
β’ (π β NrmCVec β
((normCVβπ)β(0vecβπ)) = 0) |
146 | 1, 145 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
β’
((normCVβπ)β(0vecβπ)) = 0 |
147 | 146 | oveq2i 7420 |
. . . . . . . . . . . . . . 15
β’ ((1 /
π¦) Β·
((normCVβπ)β(0vecβπ))) = ((1 / π¦) Β· 0) |
148 | | mul01 11393 |
. . . . . . . . . . . . . . 15
β’ ((1 /
π¦) β β β
((1 / π¦) Β· 0) =
0) |
149 | 147, 148 | eqtrid 2785 |
. . . . . . . . . . . . . 14
β’ ((1 /
π¦) β β β
((1 / π¦) Β·
((normCVβπ)β(0vecβπ))) = 0) |
150 | 144, 149 | syl 17 |
. . . . . . . . . . . . 13
β’ (π¦ β β+
β ((1 / π¦) Β·
((normCVβπ)β(0vecβπ))) = 0) |
151 | 143, 150 | breqtrrid 5187 |
. . . . . . . . . . . 12
β’ (π¦ β β+
β ((normCVβπ)β(πβ(0vecβπ))) β€ ((1 / π¦) Β·
((normCVβπ)β(0vecβπ)))) |
152 | 151 | ad3antlr 730 |
. . . . . . . . . . 11
β’ ((((π β π β§ π¦ β β+) β§ π§ β π) β§ βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1)) β
((normCVβπ)β(πβ(0vecβπ))) β€ ((1 / π¦) Β·
((normCVβπ)β(0vecβπ)))) |
153 | 49, 134, 152 | pm2.61ne 3028 |
. . . . . . . . . 10
β’ ((((π β π β§ π¦ β β+) β§ π§ β π) β§ βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1)) β
((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§))) |
154 | 153 | ex 414 |
. . . . . . . . 9
β’ (((π β π β§ π¦ β β+) β§ π§ β π) β (βπ₯ β π (((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β
((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
155 | 154 | ralrimdva 3155 |
. . . . . . . 8
β’ ((π β π β§ π¦ β β+) β
(βπ₯ β π
(((normCVβπ)β(π₯( βπ£ βπ)π)) β€ π¦ β ((normCVβπ)β(πβ(π₯( βπ£ βπ)π))) β€ 1) β βπ§ β π ((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
156 | 45, 155 | sylbid 239 |
. . . . . . 7
β’ ((π β π β§ π¦ β β+) β
(βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1) β βπ§ β π ((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
157 | 156 | imp 408 |
. . . . . 6
β’ (((π β π β§ π¦ β β+) β§
βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1)) β βπ§ β π ((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§))) |
158 | | oveq1 7416 |
. . . . . . . . 9
β’ (π₯ = (1 / π¦) β (π₯ Β· ((normCVβπ)βπ§)) = ((1 / π¦) Β· ((normCVβπ)βπ§))) |
159 | 158 | breq2d 5161 |
. . . . . . . 8
β’ (π₯ = (1 / π¦) β (((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§)) β ((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
160 | 159 | ralbidv 3178 |
. . . . . . 7
β’ (π₯ = (1 / π¦) β (βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§)) β βπ§ β π ((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§)))) |
161 | 160 | rspcev 3613 |
. . . . . 6
β’ (((1 /
π¦) β β β§
βπ§ β π ((normCVβπ)β(πβπ§)) β€ ((1 / π¦) Β· ((normCVβπ)βπ§))) β βπ₯ β β βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§))) |
162 | 19, 157, 161 | syl2anc 585 |
. . . . 5
β’ (((π β π β§ π¦ β β+) β§
βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1)) β βπ₯ β β βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§))) |
163 | 162 | rexlimdva2 3158 |
. . . 4
β’ (π β π β (βπ¦ β β+ βπ₯ β π ((π₯πΆπ) β€ π¦ β ((πβπ₯)π·(πβπ)) β€ 1) β βπ₯ β β βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§)))) |
164 | 16, 163 | syl5 34 |
. . 3
β’ (π β π β (π β ((π½ CnP πΎ)βπ) β βπ₯ β β βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§)))) |
165 | 164 | imp 408 |
. 2
β’ ((π β π β§ π β ((π½ CnP πΎ)βπ)) β βπ₯ β β βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§))) |
166 | | blocni.5 |
. . . 4
β’ π΅ = (π BLnOp π) |
167 | 2, 21, 32, 26, 166, 1, 6 | isblo3i 30054 |
. . 3
β’ (π β π΅ β (π β πΏ β§ βπ₯ β β βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§)))) |
168 | 25, 167 | mpbiran 708 |
. 2
β’ (π β π΅ β βπ₯ β β βπ§ β π ((normCVβπ)β(πβπ§)) β€ (π₯ Β· ((normCVβπ)βπ§))) |
169 | 165, 168 | sylibr 233 |
1
β’ ((π β π β§ π β ((π½ CnP πΎ)βπ)) β π β π΅) |