MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocnilem Structured version   Visualization version   GIF version

Theorem blocnilem 30784
Description: Lemma for blocni 30785 and lnocni 30786. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
blocnilem.1 𝑋 = (BaseSet‘𝑈)
Assertion
Ref Expression
blocnilem ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)

Proof of Theorem blocnilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . . . 6 𝑈 ∈ NrmCVec
2 blocnilem.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 blocni.8 . . . . . . 7 𝐶 = (IndMet‘𝑈)
42, 3imsxmet 30672 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
51, 4ax-mp 5 . . . . 5 𝐶 ∈ (∞Met‘𝑋)
6 blocni.w . . . . . 6 𝑊 ∈ NrmCVec
7 eqid 2729 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 blocni.d . . . . . . 7 𝐷 = (IndMet‘𝑊)
97, 8imsxmet 30672 . . . . . 6 (𝑊 ∈ NrmCVec → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
106, 9ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
11 1rp 12933 . . . . . 6 1 ∈ ℝ+
12 blocni.j . . . . . . 7 𝐽 = (MetOpen‘𝐶)
13 blocni.k . . . . . . 7 𝐾 = (MetOpen‘𝐷)
1412, 13metcnpi3 24468 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 1 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
1511, 14mpanr2 704 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
165, 10, 15mpanl12 702 . . . 4 (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
17 rpreccl 12957 . . . . . . . 8 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
1817rpred 12973 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ)
1918ad2antlr 727 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → (1 / 𝑦) ∈ ℝ)
20 eqid 2729 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
21 eqid 2729 . . . . . . . . . . . . . . 15 (normCV𝑈) = (normCV𝑈)
222, 20, 21, 3imsdval 30666 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
231, 22mp3an1 1450 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
2423breq1d 5112 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → ((𝑥𝐶𝑃) ≤ 𝑦 ↔ ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦))
25 blocni.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
26 blocni.4 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
272, 7, 26lnof 30735 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
281, 6, 25, 27mp3an 1463 . . . . . . . . . . . . . . . 16 𝑇:𝑋⟶(BaseSet‘𝑊)
2928ffvelcdmi 7037 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ (BaseSet‘𝑊))
3028ffvelcdmi 7037 . . . . . . . . . . . . . . 15 (𝑃𝑋 → (𝑇𝑃) ∈ (BaseSet‘𝑊))
31 eqid 2729 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
32 eqid 2729 . . . . . . . . . . . . . . . . 17 (normCV𝑊) = (normCV𝑊)
337, 31, 32, 8imsdval 30666 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
346, 33mp3an1 1450 . . . . . . . . . . . . . . 15 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
3529, 30, 34syl2an 596 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
361, 6, 253pm3.2i 1340 . . . . . . . . . . . . . . . 16 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
372, 20, 31, 26lnosub 30739 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝑥𝑋𝑃𝑋)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3836, 37mpan 690 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑃𝑋) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3938fveq2d 6844 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
4035, 39eqtr4d 2767 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))))
4140breq1d 5112 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → (((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1))
4224, 41imbi12d 344 . . . . . . . . . . 11 ((𝑥𝑋𝑃𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4342ancoms 458 . . . . . . . . . 10 ((𝑃𝑋𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4443adantlr 715 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4544ralbidva 3154 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
46 2fveq3 6845 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑊)‘(𝑇𝑧)) = ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
47 fveq2 6840 . . . . . . . . . . . . 13 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
4847oveq2d 7385 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
4946, 48breq12d 5115 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈)))))
501a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑈 ∈ NrmCVec)
51 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑃𝑋)
52 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑋𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
532, 21nvcl 30641 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
541, 53mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ)
56 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0vec𝑈) = (0vec𝑈)
572, 56, 21nvgt0 30654 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
581, 57mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
5958biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → 0 < ((normCV𝑈)‘𝑧))
6055, 59elrpd 12970 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ+)
61 rpdivcl 12956 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6252, 60, 61syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6362rpcnd 12975 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ)
64 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑧𝑋)
65 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
662, 65nvscl 30606 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ NrmCVec ∧ (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
6750, 63, 64, 66syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
68 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 ( +𝑣𝑈) = ( +𝑣𝑈)
692, 68, 20nvpncan2 30633 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7050, 51, 67, 69syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7170fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
7262rprege0d 12980 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))))
732, 65, 21nvsge0 30644 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ 𝑧𝑋) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
7450, 72, 64, 73syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
75 rpcn 12940 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7675ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ∈ ℂ)
7754ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℝ)
7877recnd 11180 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℂ)
792, 56, 21nvz 30649 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
801, 79mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑋 → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
8180necon3bid 2969 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑋 → (((normCV𝑈)‘𝑧) ≠ 0 ↔ 𝑧 ≠ (0vec𝑈)))
8281biimpar 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ≠ 0)
8382adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ≠ 0)
8476, 78, 83divcan1d 11937 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)) = 𝑦)
8571, 74, 843eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = 𝑦)
86 rpre 12938 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
8786leidd 11722 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+𝑦𝑦)
8887ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦𝑦)
8985, 88eqbrtrd 5124 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦)
902, 68nvgcl 30600 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
9150, 51, 67, 90syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
92 fvoveq1 7392 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9392breq1d 5112 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 ↔ ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦))
94 fvoveq1 7392 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9594fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))))
9695breq1d 5112 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
9793, 96imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) ↔ (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9897rspcv 3581 . . . . . . . . . . . . . . . . 17 ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋 → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9991, 98syl 17 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
10089, 99mpid 44 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
10128ffvelcdmi 7037 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1027, 32nvcl 30641 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
1036, 101, 102sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑧𝑋 → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
104103ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
105 1red 11153 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 1 ∈ ℝ)
106104, 105, 62lemuldiv2d 13023 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
10770fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
108 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
1092, 65, 108, 26lnomul 30740 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋)) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11036, 109mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11163, 64, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
112107, 111eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
113112fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))))
1146a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑊 ∈ NrmCVec)
115101ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1167, 108, 32nvsge0 30644 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
117114, 72, 115, 116syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
118113, 117eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
119118breq1d 5112 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1))
120 rpcnne0 12948 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
121 rpcnne0 12948 . . . . . . . . . . . . . . . . . . . 20 (((normCV𝑈)‘𝑧) ∈ ℝ+ → (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0))
122 recdiv 11866 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0)) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
123120, 121, 122syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
12452, 60, 123syl2an 596 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
125 rpne0 12946 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ≠ 0)
126125ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ≠ 0)
12778, 76, 126divrec2d 11940 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑈)‘𝑧) / 𝑦) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
128124, 127eqtr2d 2765 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = (1 / (𝑦 / ((normCV𝑈)‘𝑧))))
129128breq2d 5114 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
130106, 119, 1293bitr4d 311 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
131100, 130sylibd 239 . . . . . . . . . . . . . 14 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
132131anassrs 467 . . . . . . . . . . . . 13 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
133132imp 406 . . . . . . . . . . . 12 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
134133an32s 652 . . . . . . . . . . 11 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) ∧ 𝑧 ≠ (0vec𝑈)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
135 eqid 2729 . . . . . . . . . . . . . . . . . 18 (0vec𝑊) = (0vec𝑊)
1362, 7, 56, 135, 26lno0 30736 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
1371, 6, 25, 136mp3an 1463 . . . . . . . . . . . . . . . 16 (𝑇‘(0vec𝑈)) = (0vec𝑊)
138137fveq2i 6843 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = ((normCV𝑊)‘(0vec𝑊))
139135, 32nvz0 30648 . . . . . . . . . . . . . . . 16 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
1406, 139ax-mp 5 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(0vec𝑊)) = 0
141138, 140eqtri 2752 . . . . . . . . . . . . . 14 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = 0
142 0le0 12265 . . . . . . . . . . . . . 14 0 ≤ 0
143141, 142eqbrtri 5123 . . . . . . . . . . . . 13 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ 0
14417rpcnd 12975 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℂ)
14556, 21nvz0 30648 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
1461, 145ax-mp 5 . . . . . . . . . . . . . . . 16 ((normCV𝑈)‘(0vec𝑈)) = 0
147146oveq2i 7380 . . . . . . . . . . . . . . 15 ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = ((1 / 𝑦) · 0)
148 mul01 11331 . . . . . . . . . . . . . . 15 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · 0) = 0)
149147, 148eqtrid 2776 . . . . . . . . . . . . . 14 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
150144, 149syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
151143, 150breqtrrid 5140 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
152151ad3antlr 731 . . . . . . . . . . 11 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
15349, 134, 152pm2.61ne 3010 . . . . . . . . . 10 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
154153ex 412 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
155154ralrimdva 3133 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
15645, 155sylbid 240 . . . . . . 7 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
157156imp 406 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
158 oveq1 7376 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (𝑥 · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
159158breq2d 5114 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
160159ralbidv 3156 . . . . . . 7 (𝑥 = (1 / 𝑦) → (∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
161160rspcev 3585 . . . . . 6 (((1 / 𝑦) ∈ ℝ ∧ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
16219, 157, 161syl2anc 584 . . . . 5 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
163162rexlimdva2 3136 . . . 4 (𝑃𝑋 → (∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16416, 163syl5 34 . . 3 (𝑃𝑋 → (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
165164imp 406 . 2 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
166 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
1672, 21, 32, 26, 166, 1, 6isblo3i 30781 . . 3 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16825, 167mpbiran 709 . 2 (𝑇𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
169165, 168sylibr 234 1 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  0cc0 11046  1c1 11047   · cmul 11051   < clt 11186  cle 11187   / cdiv 11813  +crp 12929  ∞Metcxmet 21282  MetOpencmopn 21287   CnP ccnp 23146  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  0veccn0v 30568  𝑣 cnsb 30569  normCVcnmcv 30570  IndMetcims 30571   LnOp clno 30720   BLnOp cblo 30722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125  ax-mulf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-topgen 17383  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-top 22815  df-topon 22832  df-bases 22867  df-cnp 23149  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-lno 30724  df-nmoo 30725  df-blo 30726  df-0o 30727
This theorem is referenced by:  blocni  30785  lnocni  30786
  Copyright terms: Public domain W3C validator