MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq1 Structured version   Visualization version   GIF version

Theorem fvreseq1 6953
Description: Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.)
Assertion
Ref Expression
fvreseq1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvreseq1
StepHypRef Expression
1 fnresdm 6587 . . . . 5 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
21ad2antlr 724 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → (𝐺𝐵) = 𝐺)
32eqcomd 2743 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → 𝐺 = (𝐺𝐵))
43eqeq2d 2748 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ (𝐹𝐵) = (𝐺𝐵)))
5 ssid 3952 . . 3 𝐵𝐵
6 fvreseq0 6952 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐵𝐴𝐵𝐵)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
75, 6mpanr2 701 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
84, 7bitrd 278 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wral 3062  wss 3896  cres 5607   Fn wfn 6458  cfv 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-fv 6471
This theorem is referenced by:  symgextres  19100  sseqfres  32466
  Copyright terms: Public domain W3C validator