MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq1 Structured version   Visualization version   GIF version

Theorem fvreseq1 6916
Description: Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.)
Assertion
Ref Expression
fvreseq1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvreseq1
StepHypRef Expression
1 fnresdm 6551 . . . . 5 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
21ad2antlr 724 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → (𝐺𝐵) = 𝐺)
32eqcomd 2744 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → 𝐺 = (𝐺𝐵))
43eqeq2d 2749 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ (𝐹𝐵) = (𝐺𝐵)))
5 ssid 3943 . . 3 𝐵𝐵
6 fvreseq0 6915 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐵𝐴𝐵𝐵)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
75, 6mpanr2 701 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
84, 7bitrd 278 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wral 3064  wss 3887  cres 5591   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  symgextres  19033  sseqfres  32360
  Copyright terms: Public domain W3C validator