MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq1 Structured version   Visualization version   GIF version

Theorem fvreseq1 7014
Description: Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.)
Assertion
Ref Expression
fvreseq1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvreseq1
StepHypRef Expression
1 fnresdm 6640 . . . . 5 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
21ad2antlr 727 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → (𝐺𝐵) = 𝐺)
32eqcomd 2736 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → 𝐺 = (𝐺𝐵))
43eqeq2d 2741 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ (𝐹𝐵) = (𝐺𝐵)))
5 ssid 3972 . . 3 𝐵𝐵
6 fvreseq0 7013 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐵𝐴𝐵𝐵)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
75, 6mpanr2 704 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
84, 7bitrd 279 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3045  wss 3917  cres 5643   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  symgextres  19362  ressply1evl  22264  sseqfres  34391  imaidfu  49103  imasubc  49144
  Copyright terms: Public domain W3C validator