![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvreseq1 | Structured version Visualization version GIF version |
Description: Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
fvreseq1 | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6659 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → (𝐺 ↾ 𝐵) = 𝐺) | |
2 | 1 | ad2antlr 724 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → (𝐺 ↾ 𝐵) = 𝐺) |
3 | 2 | eqcomd 2730 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → 𝐺 = (𝐺 ↾ 𝐵)) |
4 | 3 | eqeq2d 2735 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵))) |
5 | ssid 3996 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
6 | fvreseq0 7029 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
7 | 5, 6 | mpanr2 701 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
8 | 4, 7 | bitrd 279 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∀wral 3053 ⊆ wss 3940 ↾ cres 5668 Fn wfn 6528 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-fv 6541 |
This theorem is referenced by: symgextres 19330 ressply1evl 33078 sseqfres 33847 |
Copyright terms: Public domain | W3C validator |