![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvreseq1 | Structured version Visualization version GIF version |
Description: Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
fvreseq1 | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6688 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → (𝐺 ↾ 𝐵) = 𝐺) | |
2 | 1 | ad2antlr 727 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → (𝐺 ↾ 𝐵) = 𝐺) |
3 | 2 | eqcomd 2741 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → 𝐺 = (𝐺 ↾ 𝐵)) |
4 | 3 | eqeq2d 2746 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵))) |
5 | ssid 4018 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
6 | fvreseq0 7058 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
7 | 5, 6 | mpanr2 704 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
8 | 4, 7 | bitrd 279 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3059 ⊆ wss 3963 ↾ cres 5691 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: symgextres 19458 ressply1evl 22390 sseqfres 34375 |
Copyright terms: Public domain | W3C validator |