![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pw2f1o | Structured version Visualization version GIF version |
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.) |
Ref | Expression |
---|---|
pw2f1o.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pw2f1o.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
pw2f1o.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
pw2f1o.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
pw2f1o.5 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) |
Ref | Expression |
---|---|
pw2f1o | ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2f1o.5 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) | |
2 | eqid 2735 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) | |
3 | pw2f1o.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | pw2f1o.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | pw2f1o.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
6 | pw2f1o.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
7 | 3, 4, 5, 6 | pw2f1olem 9115 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶})))) |
8 | 7 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)))) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
9 | 2, 8 | mpanr2 704 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
10 | 9 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴)) |
11 | vex 3482 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | 11 | cnvex 7948 | . . . 4 ⊢ ◡𝑦 ∈ V |
13 | 12 | imaex 7937 | . . 3 ⊢ (◡𝑦 “ {𝐶}) ∈ V |
14 | 13 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴)) → (◡𝑦 “ {𝐶}) ∈ V) |
15 | 3, 4, 5, 6 | pw2f1olem 9115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡𝑦 “ {𝐶})))) |
16 | 1, 10, 14, 15 | f1od 7685 | 1 ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ifcif 4531 𝒫 cpw 4605 {csn 4631 {cpr 4633 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 –1-1-onto→wf1o 6562 (class class class)co 7431 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 |
This theorem is referenced by: pw2eng 9117 indf1o 34005 |
Copyright terms: Public domain | W3C validator |