MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1o Structured version   Visualization version   GIF version

Theorem pw2f1o 9116
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
pw2f1o.5 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
Assertion
Ref Expression
pw2f1o (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑m 𝐴))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝐵,𝑧   𝑥,𝐶,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝐹(𝑥,𝑧)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem pw2f1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o.5 . 2 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
2 eqid 2735 . . . 4 (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))
3 pw2f1o.1 . . . . . 6 (𝜑𝐴𝑉)
4 pw2f1o.2 . . . . . 6 (𝜑𝐵𝑊)
5 pw2f1o.3 . . . . . 6 (𝜑𝐶𝑊)
6 pw2f1o.4 . . . . . 6 (𝜑𝐵𝐶)
73, 4, 5, 6pw2f1olem 9115 . . . . 5 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶}))))
87biimpa 476 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
92, 8mpanr2 704 . . 3 ((𝜑𝑥 ∈ 𝒫 𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
109simpld 494 . 2 ((𝜑𝑥 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴))
11 vex 3482 . . . . 5 𝑦 ∈ V
1211cnvex 7948 . . . 4 𝑦 ∈ V
1312imaex 7937 . . 3 (𝑦 “ {𝐶}) ∈ V
1413a1i 11 . 2 ((𝜑𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴)) → (𝑦 “ {𝐶}) ∈ V)
153, 4, 5, 6pw2f1olem 9115 . 2 (𝜑 → ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (𝑦 “ {𝐶}))))
161, 10, 14, 15f1od 7685 1 (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  ifcif 4531  𝒫 cpw 4605  {csn 4631  {cpr 4633  cmpt 5231  ccnv 5688  cima 5692  1-1-ontowf1o 6562  (class class class)co 7431  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867
This theorem is referenced by:  pw2eng  9117  indf1o  34005
  Copyright terms: Public domain W3C validator