| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2f1o | Structured version Visualization version GIF version | ||
| Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| Ref | Expression |
|---|---|
| pw2f1o.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| pw2f1o.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| pw2f1o.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| pw2f1o.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| pw2f1o.5 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) |
| Ref | Expression |
|---|---|
| pw2f1o | ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.5 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) | |
| 2 | eqid 2730 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) | |
| 3 | pw2f1o.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | pw2f1o.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | pw2f1o.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | pw2f1o.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 7 | 3, 4, 5, 6 | pw2f1olem 9049 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶})))) |
| 8 | 7 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)))) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
| 9 | 2, 8 | mpanr2 704 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
| 10 | 9 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴)) |
| 11 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | cnvex 7903 | . . . 4 ⊢ ◡𝑦 ∈ V |
| 13 | 12 | imaex 7892 | . . 3 ⊢ (◡𝑦 “ {𝐶}) ∈ V |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴)) → (◡𝑦 “ {𝐶}) ∈ V) |
| 15 | 3, 4, 5, 6 | pw2f1olem 9049 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡𝑦 “ {𝐶})))) |
| 16 | 1, 10, 14, 15 | f1od 7643 | 1 ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ifcif 4490 𝒫 cpw 4565 {csn 4591 {cpr 4593 ↦ cmpt 5190 ◡ccnv 5639 “ cima 5643 –1-1-onto→wf1o 6512 (class class class)co 7389 ↑m cmap 8801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 |
| This theorem is referenced by: pw2eng 9051 indf1o 32793 |
| Copyright terms: Public domain | W3C validator |