MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1o Structured version   Visualization version   GIF version

Theorem pw2f1o 8817
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
pw2f1o.5 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
Assertion
Ref Expression
pw2f1o (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑m 𝐴))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝐵,𝑧   𝑥,𝐶,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝐹(𝑥,𝑧)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem pw2f1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o.5 . 2 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
2 eqid 2738 . . . 4 (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))
3 pw2f1o.1 . . . . . 6 (𝜑𝐴𝑉)
4 pw2f1o.2 . . . . . 6 (𝜑𝐵𝑊)
5 pw2f1o.3 . . . . . 6 (𝜑𝐶𝑊)
6 pw2f1o.4 . . . . . 6 (𝜑𝐵𝐶)
73, 4, 5, 6pw2f1olem 8816 . . . . 5 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶}))))
87biimpa 476 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
92, 8mpanr2 700 . . 3 ((𝜑𝑥 ∈ 𝒫 𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
109simpld 494 . 2 ((𝜑𝑥 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴))
11 vex 3426 . . . . 5 𝑦 ∈ V
1211cnvex 7746 . . . 4 𝑦 ∈ V
1312imaex 7737 . . 3 (𝑦 “ {𝐶}) ∈ V
1413a1i 11 . 2 ((𝜑𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴)) → (𝑦 “ {𝐶}) ∈ V)
153, 4, 5, 6pw2f1olem 8816 . 2 (𝜑 → ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (𝑦 “ {𝐶}))))
161, 10, 14, 15f1od 7499 1 (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  ifcif 4456  𝒫 cpw 4530  {csn 4558  {cpr 4560  cmpt 5153  ccnv 5579  cima 5583  1-1-ontowf1o 6417  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575
This theorem is referenced by:  pw2eng  8818  indf1o  31892
  Copyright terms: Public domain W3C validator