MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1o Structured version   Visualization version   GIF version

Theorem pw2f1o 9006
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
pw2f1o.5 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
Assertion
Ref Expression
pw2f1o (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑m 𝐴))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝐵,𝑧   𝑥,𝐶,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝐹(𝑥,𝑧)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem pw2f1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o.5 . 2 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
2 eqid 2729 . . . 4 (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))
3 pw2f1o.1 . . . . . 6 (𝜑𝐴𝑉)
4 pw2f1o.2 . . . . . 6 (𝜑𝐵𝑊)
5 pw2f1o.3 . . . . . 6 (𝜑𝐶𝑊)
6 pw2f1o.4 . . . . . 6 (𝜑𝐵𝐶)
73, 4, 5, 6pw2f1olem 9005 . . . . 5 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶}))))
87biimpa 476 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
92, 8mpanr2 704 . . 3 ((𝜑𝑥 ∈ 𝒫 𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
109simpld 494 . 2 ((𝜑𝑥 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴))
11 vex 3442 . . . . 5 𝑦 ∈ V
1211cnvex 7865 . . . 4 𝑦 ∈ V
1312imaex 7854 . . 3 (𝑦 “ {𝐶}) ∈ V
1413a1i 11 . 2 ((𝜑𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴)) → (𝑦 “ {𝐶}) ∈ V)
153, 4, 5, 6pw2f1olem 9005 . 2 (𝜑 → ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (𝑦 “ {𝐶}))))
161, 10, 14, 15f1od 7605 1 (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  ifcif 4478  𝒫 cpw 4553  {csn 4579  {cpr 4581  cmpt 5176  ccnv 5622  cima 5626  1-1-ontowf1o 6485  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762
This theorem is referenced by:  pw2eng  9007  indf1o  32820
  Copyright terms: Public domain W3C validator