Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pw2f1o | Structured version Visualization version GIF version |
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.) |
Ref | Expression |
---|---|
pw2f1o.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pw2f1o.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
pw2f1o.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
pw2f1o.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
pw2f1o.5 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) |
Ref | Expression |
---|---|
pw2f1o | ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2f1o.5 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) | |
2 | eqid 2738 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) | |
3 | pw2f1o.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | pw2f1o.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | pw2f1o.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
6 | pw2f1o.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
7 | 3, 4, 5, 6 | pw2f1olem 8816 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶})))) |
8 | 7 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)))) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
9 | 2, 8 | mpanr2 700 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
10 | 9 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴)) |
11 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | 11 | cnvex 7746 | . . . 4 ⊢ ◡𝑦 ∈ V |
13 | 12 | imaex 7737 | . . 3 ⊢ (◡𝑦 “ {𝐶}) ∈ V |
14 | 13 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴)) → (◡𝑦 “ {𝐶}) ∈ V) |
15 | 3, 4, 5, 6 | pw2f1olem 8816 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡𝑦 “ {𝐶})))) |
16 | 1, 10, 14, 15 | f1od 7499 | 1 ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ifcif 4456 𝒫 cpw 4530 {csn 4558 {cpr 4560 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 –1-1-onto→wf1o 6417 (class class class)co 7255 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 |
This theorem is referenced by: pw2eng 8818 indf1o 31892 |
Copyright terms: Public domain | W3C validator |