| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2f1o | Structured version Visualization version GIF version | ||
| Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| Ref | Expression |
|---|---|
| pw2f1o.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| pw2f1o.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| pw2f1o.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| pw2f1o.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| pw2f1o.5 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) |
| Ref | Expression |
|---|---|
| pw2f1o | ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.5 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) | |
| 2 | eqid 2736 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) | |
| 3 | pw2f1o.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | pw2f1o.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | pw2f1o.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | pw2f1o.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 7 | 3, 4, 5, 6 | pw2f1olem 9095 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶})))) |
| 8 | 7 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)))) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
| 9 | 2, 8 | mpanr2 704 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
| 10 | 9 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑m 𝐴)) |
| 11 | vex 3468 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | cnvex 7926 | . . . 4 ⊢ ◡𝑦 ∈ V |
| 13 | 12 | imaex 7915 | . . 3 ⊢ (◡𝑦 “ {𝐶}) ∈ V |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴)) → (◡𝑦 “ {𝐶}) ∈ V) |
| 15 | 3, 4, 5, 6 | pw2f1olem 9095 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑m 𝐴) ∧ 𝑥 = (◡𝑦 “ {𝐶})))) |
| 16 | 1, 10, 14, 15 | f1od 7664 | 1 ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ifcif 4505 𝒫 cpw 4580 {csn 4606 {cpr 4608 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 –1-1-onto→wf1o 6535 (class class class)co 7410 ↑m cmap 8845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 |
| This theorem is referenced by: pw2eng 9097 indf1o 32846 |
| Copyright terms: Public domain | W3C validator |