MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv1 Structured version   Visualization version   GIF version

Theorem divdiv1 11069
Description: Division into a fraction. (Contributed by NM, 31-Dec-2007.)
Assertion
Ref Expression
divdiv1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))

Proof of Theorem divdiv1
StepHypRef Expression
1 ax-1cn 10317 . . . . 5 1 ∈ ℂ
2 ax-1ne0 10328 . . . . 5 1 ≠ 0
31, 2pm3.2i 464 . . . 4 (1 ∈ ℂ ∧ 1 ≠ 0)
4 divdivdiv 11059 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (1 ∈ ℂ ∧ 1 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶)))
53, 4mpanr2 695 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶)))
653impa 1140 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶)))
7 div1 11048 . . . . 5 (𝐶 ∈ ℂ → (𝐶 / 1) = 𝐶)
87oveq2d 6926 . . . 4 (𝐶 ∈ ℂ → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶))
98ad2antrl 719 . . 3 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶))
1093adant1 1164 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶))
11 mulid1 10361 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
1211oveq1d 6925 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶)))
13123ad2ant1 1167 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶)))
146, 10, 133eqtr3d 2869 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  (class class class)co 6910  cc 10257  0cc0 10259  1c1 10260   · cmul 10264   / cdiv 11016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017
This theorem is referenced by:  recdiv2  11071  divdiv1d  11165  fldiv4lem1div2uz2  12939  fldiv2  12962  sin01bnd  15294  flodddiv4t2lthalf  15520  pythagtriplem12  15909  pythagtriplem14  15911  pythagtriplem16  15913  coseq1  24681  efeq1  24682  ang180lem1  24956  atan1  25075  fsumdvdscom  25331  bposlem8  25436  gausslemma2dlem3  25513  2lgslem1a2  25535  rplogsumlem2  25594  dchrvmasum2lem  25605  dchrisum0lem2  25627  dchrisum0lem3  25628  mulogsum  25641  mulog2sumlem2  25644  pntlemr  25711  pntlemf  25714  hgt750lem  31274  quad3  32104  wallispilem4  41073  dirkertrigeqlem3  41105  dirkercncflem1  41108  fourierswlem  41235  dignn0flhalflem2  43271  dignn0ehalf  43272
  Copyright terms: Public domain W3C validator