| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divdiv1 | Structured version Visualization version GIF version | ||
| Description: Division into a fraction. (Contributed by NM, 31-Dec-2007.) |
| Ref | Expression |
|---|---|
| divdiv1 | ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 2 | ax-1ne0 11097 | . . . . 5 ⊢ 1 ≠ 0 | |
| 3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (1 ∈ ℂ ∧ 1 ≠ 0) |
| 4 | divdivdiv 11843 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (1 ∈ ℂ ∧ 1 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) | |
| 5 | 3, 4 | mpanr2 704 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) |
| 6 | 5 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) |
| 7 | div1 11832 | . . . . 5 ⊢ (𝐶 ∈ ℂ → (𝐶 / 1) = 𝐶) | |
| 8 | 7 | oveq2d 7369 | . . . 4 ⊢ (𝐶 ∈ ℂ → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
| 9 | 8 | ad2antrl 728 | . . 3 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
| 10 | 9 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
| 11 | mulrid 11132 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 12 | 11 | oveq1d 7368 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶))) |
| 13 | 12 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶))) |
| 14 | 6, 10, 13 | 3eqtr3d 2772 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 / cdiv 11795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 |
| This theorem is referenced by: recdiv2 11855 divdiv1d 11949 fldiv4lem1div2uz2 13758 fldiv2 13783 sin01bnd 16112 flodddiv4t2lthalf 16347 pythagtriplem12 16756 pythagtriplem14 16758 pythagtriplem16 16760 coseq1 26450 efeq1 26453 ang180lem1 26735 atan1 26854 fsumdvdscom 27111 bposlem8 27218 gausslemma2dlem3 27295 2lgslem1a2 27317 rplogsumlem2 27412 dchrvmasum2lem 27423 dchrisum0lem2 27445 dchrisum0lem3 27446 mulogsum 27459 mulog2sumlem2 27462 pntlemr 27529 pntlemf 27532 hgt750lem 34618 quad3 35642 wallispilem4 46050 dirkertrigeqlem3 46082 dirkercncflem1 46085 fourierswlem 46212 dignn0flhalflem2 48602 dignn0ehalf 48603 |
| Copyright terms: Public domain | W3C validator |