MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv1 Structured version   Visualization version   GIF version

Theorem divdiv1 11853
Description: Division into a fraction. (Contributed by NM, 31-Dec-2007.)
Assertion
Ref Expression
divdiv1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))

Proof of Theorem divdiv1
StepHypRef Expression
1 ax-1cn 11086 . . . . 5 1 ∈ ℂ
2 ax-1ne0 11097 . . . . 5 1 ≠ 0
31, 2pm3.2i 470 . . . 4 (1 ∈ ℂ ∧ 1 ≠ 0)
4 divdivdiv 11843 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (1 ∈ ℂ ∧ 1 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶)))
53, 4mpanr2 704 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶)))
653impa 1109 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶)))
7 div1 11832 . . . . 5 (𝐶 ∈ ℂ → (𝐶 / 1) = 𝐶)
87oveq2d 7369 . . . 4 (𝐶 ∈ ℂ → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶))
98ad2antrl 728 . . 3 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶))
1093adant1 1130 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶))
11 mulrid 11132 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
1211oveq1d 7368 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶)))
13123ad2ant1 1133 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶)))
146, 10, 133eqtr3d 2772 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796
This theorem is referenced by:  recdiv2  11855  divdiv1d  11949  fldiv4lem1div2uz2  13758  fldiv2  13783  sin01bnd  16112  flodddiv4t2lthalf  16347  pythagtriplem12  16756  pythagtriplem14  16758  pythagtriplem16  16760  coseq1  26450  efeq1  26453  ang180lem1  26735  atan1  26854  fsumdvdscom  27111  bposlem8  27218  gausslemma2dlem3  27295  2lgslem1a2  27317  rplogsumlem2  27412  dchrvmasum2lem  27423  dchrisum0lem2  27445  dchrisum0lem3  27446  mulogsum  27459  mulog2sumlem2  27462  pntlemr  27529  pntlemf  27532  hgt750lem  34618  quad3  35642  wallispilem4  46050  dirkertrigeqlem3  46082  dirkercncflem1  46085  fourierswlem  46212  dignn0flhalflem2  48602  dignn0ehalf  48603
  Copyright terms: Public domain W3C validator