Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divdiv1 | Structured version Visualization version GIF version |
Description: Division into a fraction. (Contributed by NM, 31-Dec-2007.) |
Ref | Expression |
---|---|
divdiv1 | ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | ax-1ne0 10871 | . . . . 5 ⊢ 1 ≠ 0 | |
3 | 1, 2 | pm3.2i 470 | . . . 4 ⊢ (1 ∈ ℂ ∧ 1 ≠ 0) |
4 | divdivdiv 11606 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (1 ∈ ℂ ∧ 1 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) | |
5 | 3, 4 | mpanr2 700 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) |
6 | 5 | 3impa 1108 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 · 1) / (𝐵 · 𝐶))) |
7 | div1 11594 | . . . . 5 ⊢ (𝐶 ∈ ℂ → (𝐶 / 1) = 𝐶) | |
8 | 7 | oveq2d 7271 | . . . 4 ⊢ (𝐶 ∈ ℂ → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
9 | 8 | ad2antrl 724 | . . 3 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
10 | 9 | 3adant1 1128 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / (𝐶 / 1)) = ((𝐴 / 𝐵) / 𝐶)) |
11 | mulid1 10904 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
12 | 11 | oveq1d 7270 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶))) |
13 | 12 | 3ad2ant1 1131 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 1) / (𝐵 · 𝐶)) = (𝐴 / (𝐵 · 𝐶))) |
14 | 6, 10, 13 | 3eqtr3d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 / cdiv 11562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 |
This theorem is referenced by: recdiv2 11618 divdiv1d 11712 fldiv4lem1div2uz2 13484 fldiv2 13509 sin01bnd 15822 flodddiv4t2lthalf 16053 pythagtriplem12 16455 pythagtriplem14 16457 pythagtriplem16 16459 coseq1 25586 efeq1 25589 ang180lem1 25864 atan1 25983 fsumdvdscom 26239 bposlem8 26344 gausslemma2dlem3 26421 2lgslem1a2 26443 rplogsumlem2 26538 dchrvmasum2lem 26549 dchrisum0lem2 26571 dchrisum0lem3 26572 mulogsum 26585 mulog2sumlem2 26588 pntlemr 26655 pntlemf 26658 hgt750lem 32531 quad3 33528 wallispilem4 43499 dirkertrigeqlem3 43531 dirkercncflem1 43534 fourierswlem 43661 dignn0flhalflem2 45850 dignn0ehalf 45851 |
Copyright terms: Public domain | W3C validator |