MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmresg Structured version   Visualization version   GIF version

Theorem pmresg 8911
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))

Proof of Theorem pmresg
StepHypRef Expression
1 n0i 4339 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → ¬ (𝐴pm 𝐶) = ∅)
2 fnpm 8875 . . . . . . 7 pm Fn (V × V)
32fndmi 6671 . . . . . 6 dom ↑pm = (V × V)
43ndmov 7618 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴pm 𝐶) = ∅)
51, 4nsyl2 141 . . . 4 (𝐹 ∈ (𝐴pm 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
65simpld 494 . . 3 (𝐹 ∈ (𝐴pm 𝐶) → 𝐴 ∈ V)
76adantl 481 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐴 ∈ V)
8 simpl 482 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐵𝑉)
9 elpmi 8887 . . . . . 6 (𝐹 ∈ (𝐴pm 𝐶) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐶))
109simpld 494 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → 𝐹:dom 𝐹𝐴)
1110adantl 481 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐹:dom 𝐹𝐴)
12 inss1 4236 . . . 4 (dom 𝐹𝐵) ⊆ dom 𝐹
13 fssres 6773 . . . 4 ((𝐹:dom 𝐹𝐴 ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
1411, 12, 13sylancl 586 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
15 ffun 6738 . . . . 5 (𝐹:dom 𝐹𝐴 → Fun 𝐹)
16 resres 6009 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
17 funrel 6582 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
18 resdm 6043 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
19 reseq1 5990 . . . . . . 7 ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2017, 18, 193syl 18 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2116, 20eqtr3id 2790 . . . . 5 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2211, 15, 213syl 18 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2322feq1d 6719 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴 ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴))
2414, 23mpbid 232 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴)
25 inss2 4237 . . 3 (dom 𝐹𝐵) ⊆ 𝐵
26 elpm2r 8886 . . 3 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ ((𝐹𝐵):(dom 𝐹𝐵)⟶𝐴 ∧ (dom 𝐹𝐵) ⊆ 𝐵)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
2725, 26mpanr2 704 . 2 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
287, 8, 24, 27syl21anc 837 1 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  cin 3949  wss 3950  c0 4332   × cxp 5682  dom cdm 5684  cres 5686  Rel wrel 5689  Fun wfun 6554  wf 6556  (class class class)co 7432  pm cpm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-pm 8870
This theorem is referenced by:  lmres  23309  mbfres  25680  dvnres  25968  cpnres  25974  caures  37768
  Copyright terms: Public domain W3C validator