MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmresg Structured version   Visualization version   GIF version

Theorem pmresg 8426
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))

Proof of Theorem pmresg
StepHypRef Expression
1 n0i 4297 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → ¬ (𝐴pm 𝐶) = ∅)
2 fnpm 8406 . . . . . . 7 pm Fn (V × V)
3 fndm 6448 . . . . . . 7 ( ↑pm Fn (V × V) → dom ↑pm = (V × V))
42, 3ax-mp 5 . . . . . 6 dom ↑pm = (V × V)
54ndmov 7324 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴pm 𝐶) = ∅)
61, 5nsyl2 143 . . . 4 (𝐹 ∈ (𝐴pm 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simpld 497 . . 3 (𝐹 ∈ (𝐴pm 𝐶) → 𝐴 ∈ V)
87adantl 484 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐴 ∈ V)
9 simpl 485 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐵𝑉)
10 elpmi 8417 . . . . . 6 (𝐹 ∈ (𝐴pm 𝐶) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐶))
1110simpld 497 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → 𝐹:dom 𝐹𝐴)
1211adantl 484 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐹:dom 𝐹𝐴)
13 inss1 4203 . . . 4 (dom 𝐹𝐵) ⊆ dom 𝐹
14 fssres 6537 . . . 4 ((𝐹:dom 𝐹𝐴 ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
1512, 13, 14sylancl 588 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
16 ffun 6510 . . . . 5 (𝐹:dom 𝐹𝐴 → Fun 𝐹)
17 resres 5859 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
18 funrel 6365 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
19 resdm 5890 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
20 reseq1 5840 . . . . . . 7 ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2118, 19, 203syl 18 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2217, 21syl5eqr 2868 . . . . 5 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2312, 16, 223syl 18 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2423feq1d 6492 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴 ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴))
2515, 24mpbid 234 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴)
26 inss2 4204 . . 3 (dom 𝐹𝐵) ⊆ 𝐵
27 elpm2r 8416 . . 3 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ ((𝐹𝐵):(dom 𝐹𝐵)⟶𝐴 ∧ (dom 𝐹𝐵) ⊆ 𝐵)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
2826, 27mpanr2 702 . 2 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
298, 9, 25, 28syl21anc 835 1 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  Vcvv 3493  cin 3933  wss 3934  c0 4289   × cxp 5546  dom cdm 5548  cres 5550  Rel wrel 5553  Fun wfun 6342   Fn wfn 6343  wf 6344  (class class class)co 7148  pm cpm 8399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-pm 8401
This theorem is referenced by:  lmres  21900  mbfres  24237  dvnres  24520  cpnres  24526  caures  35017
  Copyright terms: Public domain W3C validator