MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmresg Structured version   Visualization version   GIF version

Theorem pmresg 8121
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))

Proof of Theorem pmresg
StepHypRef Expression
1 n0i 4118 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → ¬ (𝐴pm 𝐶) = ∅)
2 fnpm 8101 . . . . . . 7 pm Fn (V × V)
3 fndm 6199 . . . . . . 7 ( ↑pm Fn (V × V) → dom ↑pm = (V × V))
42, 3ax-mp 5 . . . . . 6 dom ↑pm = (V × V)
54ndmov 7050 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴pm 𝐶) = ∅)
61, 5nsyl2 145 . . . 4 (𝐹 ∈ (𝐴pm 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simpld 489 . . 3 (𝐹 ∈ (𝐴pm 𝐶) → 𝐴 ∈ V)
87adantl 474 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐴 ∈ V)
9 simpl 475 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐵𝑉)
10 elpmi 8112 . . . . . 6 (𝐹 ∈ (𝐴pm 𝐶) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐶))
1110simpld 489 . . . . 5 (𝐹 ∈ (𝐴pm 𝐶) → 𝐹:dom 𝐹𝐴)
1211adantl 474 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → 𝐹:dom 𝐹𝐴)
13 inss1 4026 . . . 4 (dom 𝐹𝐵) ⊆ dom 𝐹
14 fssres 6283 . . . 4 ((𝐹:dom 𝐹𝐴 ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
1512, 13, 14sylancl 581 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴)
16 ffun 6257 . . . . 5 (𝐹:dom 𝐹𝐴 → Fun 𝐹)
17 resres 5618 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
18 funrel 6116 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
19 resdm 5651 . . . . . . 7 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
20 reseq1 5592 . . . . . . 7 ((𝐹 ↾ dom 𝐹) = 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2118, 19, 203syl 18 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
2217, 21syl5eqr 2845 . . . . 5 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2312, 16, 223syl 18 . . . 4 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2423feq1d 6239 . . 3 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶𝐴 ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴))
2515, 24mpbid 224 . 2 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴)
26 inss2 4027 . . 3 (dom 𝐹𝐵) ⊆ 𝐵
27 elpm2r 8111 . . 3 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ ((𝐹𝐵):(dom 𝐹𝐵)⟶𝐴 ∧ (dom 𝐹𝐵) ⊆ 𝐵)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
2826, 27mpanr2 696 . 2 (((𝐴 ∈ V ∧ 𝐵𝑉) ∧ (𝐹𝐵):(dom 𝐹𝐵)⟶𝐴) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
298, 9, 25, 28syl21anc 867 1 ((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3383  cin 3766  wss 3767  c0 4113   × cxp 5308  dom cdm 5310  cres 5312  Rel wrel 5315  Fun wfun 6093   Fn wfn 6094  wf 6095  (class class class)co 6876  pm cpm 8094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-1st 7399  df-2nd 7400  df-pm 8096
This theorem is referenced by:  lmres  21430  mbfres  23749  dvnres  24032  cpnres  24038  caures  34035
  Copyright terms: Public domain W3C validator