Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mreuniss Structured version   Visualization version   GIF version

Theorem mreuniss 48816
Description: The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.)
Assertion
Ref Expression
mreuniss ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)

Proof of Theorem mreuniss
StepHypRef Expression
1 uniss 4887 . . 3 (𝑆𝐶 𝑆 𝐶)
21adantl 481 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 𝐶)
3 mreuni 17567 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
43adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝐶 = 𝑋)
52, 4sseqtrd 3991 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3922   cuni 4879  cfv 6519  Moorecmre 17549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-mre 17553
This theorem is referenced by:  mrelatlubALT  48911  mreclat  48913
  Copyright terms: Public domain W3C validator