Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mreuniss Structured version   Visualization version   GIF version

Theorem mreuniss 46081
Description: The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.)
Assertion
Ref Expression
mreuniss ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)

Proof of Theorem mreuniss
StepHypRef Expression
1 uniss 4844 . . 3 (𝑆𝐶 𝑆 𝐶)
21adantl 481 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 𝐶)
3 mreuni 17226 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
43adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝐶 = 𝑋)
52, 4sseqtrd 3957 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836  cfv 6418  Moorecmre 17208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-mre 17212
This theorem is referenced by:  mrelatlubALT  46169  mreclat  46171
  Copyright terms: Public domain W3C validator