![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mreuniss | Structured version Visualization version GIF version |
Description: The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.) |
Ref | Expression |
---|---|
mreuniss | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → ∪ 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4923 | . . 3 ⊢ (𝑆 ⊆ 𝐶 → ∪ 𝑆 ⊆ ∪ 𝐶) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → ∪ 𝑆 ⊆ ∪ 𝐶) |
3 | mreuni 17654 | . . 3 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → ∪ 𝐶 = 𝑋) |
5 | 2, 4 | sseqtrd 4039 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → ∪ 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ∪ cuni 4915 ‘cfv 6569 Moorecmre 17636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-mre 17640 |
This theorem is referenced by: mrelatlubALT 48829 mreclat 48831 |
Copyright terms: Public domain | W3C validator |