Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mreuniss Structured version   Visualization version   GIF version

Theorem mreuniss 46193
Description: The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.)
Assertion
Ref Expression
mreuniss ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)

Proof of Theorem mreuniss
StepHypRef Expression
1 uniss 4847 . . 3 (𝑆𝐶 𝑆 𝐶)
21adantl 482 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 𝐶)
3 mreuni 17309 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
43adantr 481 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝐶 = 𝑋)
52, 4sseqtrd 3961 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887   cuni 4839  cfv 6433  Moorecmre 17291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-mre 17295
This theorem is referenced by:  mrelatlubALT  46281  mreclat  46283
  Copyright terms: Public domain W3C validator