Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mreuniss Structured version   Visualization version   GIF version

Theorem mreuniss 48910
Description: The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.)
Assertion
Ref Expression
mreuniss ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)

Proof of Theorem mreuniss
StepHypRef Expression
1 uniss 4865 . . 3 (𝑆𝐶 𝑆 𝐶)
21adantl 481 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆 𝐶)
3 mreuni 17494 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
43adantr 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝐶 = 𝑋)
52, 4sseqtrd 3969 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wss 3900   cuni 4857  cfv 6477  Moorecmre 17476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-mre 17480
This theorem is referenced by:  mrelatlubALT  49005  mreclat  49007
  Copyright terms: Public domain W3C validator