Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clduni Structured version   Visualization version   GIF version

Theorem clduni 48569
Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clduni (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)

Proof of Theorem clduni
StepHypRef Expression
1 toptopon2 22937 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
21biimpi 216 . 2 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘ 𝐽))
3 cldmreon 23115 . 2 (𝐽 ∈ (TopOn‘ 𝐽) → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
4 mreuni 17652 . 2 ((Clsd‘𝐽) ∈ (Moore‘ 𝐽) → (Clsd‘𝐽) = 𝐽)
52, 3, 43syl 18 1 (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   cuni 4931  cfv 6568  Moorecmre 17634  Topctop 22912  TopOnctopon 22929  Clsdccld 23037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-iota 6520  df-fun 6570  df-fn 6571  df-fv 6576  df-mre 17638  df-top 22913  df-topon 22930  df-cld 23040
This theorem is referenced by:  clddisj  48572
  Copyright terms: Public domain W3C validator