![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clduni | Structured version Visualization version GIF version |
Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
clduni | ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 22937 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
2 | 1 | biimpi 216 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
3 | cldmreon 23115 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) | |
4 | mreuni 17652 | . 2 ⊢ ((Clsd‘𝐽) ∈ (Moore‘∪ 𝐽) → ∪ (Clsd‘𝐽) = ∪ 𝐽) | |
5 | 2, 3, 4 | 3syl 18 | 1 ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6568 Moorecmre 17634 Topctop 22912 TopOnctopon 22929 Clsdccld 23037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-iota 6520 df-fun 6570 df-fn 6571 df-fv 6576 df-mre 17638 df-top 22913 df-topon 22930 df-cld 23040 |
This theorem is referenced by: clddisj 48572 |
Copyright terms: Public domain | W3C validator |