Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clduni Structured version   Visualization version   GIF version

Theorem clduni 48798
Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clduni (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)

Proof of Theorem clduni
StepHypRef Expression
1 toptopon2 22924 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
21biimpi 216 . 2 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘ 𝐽))
3 cldmreon 23102 . 2 (𝐽 ∈ (TopOn‘ 𝐽) → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
4 mreuni 17643 . 2 ((Clsd‘𝐽) ∈ (Moore‘ 𝐽) → (Clsd‘𝐽) = 𝐽)
52, 3, 43syl 18 1 (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   cuni 4907  cfv 6561  Moorecmre 17625  Topctop 22899  TopOnctopon 22916  Clsdccld 23024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-mre 17629  df-top 22900  df-topon 22917  df-cld 23027
This theorem is referenced by:  clddisj  48801
  Copyright terms: Public domain W3C validator