| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clduni | Structured version Visualization version GIF version | ||
| Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| clduni | ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon2 22821 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 3 | cldmreon 22997 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) | |
| 4 | mreuni 17520 | . 2 ⊢ ((Clsd‘𝐽) ∈ (Moore‘∪ 𝐽) → ∪ (Clsd‘𝐽) = ∪ 𝐽) | |
| 5 | 2, 3, 4 | 3syl 18 | 1 ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 ‘cfv 6486 Moorecmre 17502 Topctop 22796 TopOnctopon 22813 Clsdccld 22919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-mre 17506 df-top 22797 df-topon 22814 df-cld 22922 |
| This theorem is referenced by: clddisj 48892 |
| Copyright terms: Public domain | W3C validator |