Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clduni | Structured version Visualization version GIF version |
Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
clduni | ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 21975 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
3 | cldmreon 22153 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (Clsd‘𝐽) ∈ (Moore‘∪ 𝐽)) | |
4 | mreuni 17226 | . 2 ⊢ ((Clsd‘𝐽) ∈ (Moore‘∪ 𝐽) → ∪ (Clsd‘𝐽) = ∪ 𝐽) | |
5 | 2, 3, 4 | 3syl 18 | 1 ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Moorecmre 17208 Topctop 21950 TopOnctopon 21967 Clsdccld 22075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-mre 17212 df-top 21951 df-topon 21968 df-cld 22078 |
This theorem is referenced by: clddisj 46085 |
Copyright terms: Public domain | W3C validator |