Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clduni Structured version   Visualization version   GIF version

Theorem clduni 47913
Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clduni (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)

Proof of Theorem clduni
StepHypRef Expression
1 toptopon2 22813 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
21biimpi 215 . 2 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘ 𝐽))
3 cldmreon 22991 . 2 (𝐽 ∈ (TopOn‘ 𝐽) → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
4 mreuni 17573 . 2 ((Clsd‘𝐽) ∈ (Moore‘ 𝐽) → (Clsd‘𝐽) = 𝐽)
52, 3, 43syl 18 1 (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   cuni 4903  cfv 6542  Moorecmre 17555  Topctop 22788  TopOnctopon 22805  Clsdccld 22913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-mre 17559  df-top 22789  df-topon 22806  df-cld 22916
This theorem is referenced by:  clddisj  47916
  Copyright terms: Public domain W3C validator