Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clduni Structured version   Visualization version   GIF version

Theorem clduni 47620
Description: The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clduni (𝐽 ∈ Top β†’ βˆͺ (Clsdβ€˜π½) = βˆͺ 𝐽)

Proof of Theorem clduni
StepHypRef Expression
1 toptopon2 22640 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
21biimpi 215 . 2 (𝐽 ∈ Top β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
3 cldmreon 22818 . 2 (𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) β†’ (Clsdβ€˜π½) ∈ (Mooreβ€˜βˆͺ 𝐽))
4 mreuni 17548 . 2 ((Clsdβ€˜π½) ∈ (Mooreβ€˜βˆͺ 𝐽) β†’ βˆͺ (Clsdβ€˜π½) = βˆͺ 𝐽)
52, 3, 43syl 18 1 (𝐽 ∈ Top β†’ βˆͺ (Clsdβ€˜π½) = βˆͺ 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  βˆͺ cuni 4907  β€˜cfv 6542  Moorecmre 17530  Topctop 22615  TopOnctopon 22632  Clsdccld 22740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-mre 17534  df-top 22616  df-topon 22633  df-cld 22743
This theorem is referenced by:  clddisj  47623
  Copyright terms: Public domain W3C validator