| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnnvg | Structured version Visualization version GIF version | ||
| Description: The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnnvg.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
| Ref | Expression |
|---|---|
| cnnvg | ⊢ + = ( +𝑣 ‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 2 | 1 | vafval 30583 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
| 3 | cnnvg.6 | . . . . 5 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
| 4 | 3 | fveq2i 6825 | . . . 4 ⊢ (1st ‘𝑈) = (1st ‘〈〈 + , · 〉, abs〉) |
| 5 | opex 5402 | . . . . 5 ⊢ 〈 + , · 〉 ∈ V | |
| 6 | absf 15245 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
| 7 | cnex 11087 | . . . . . 6 ⊢ ℂ ∈ V | |
| 8 | fex 7160 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . 5 ⊢ abs ∈ V |
| 10 | 5, 9 | op1st 7929 | . . . 4 ⊢ (1st ‘〈〈 + , · 〉, abs〉) = 〈 + , · 〉 |
| 11 | 4, 10 | eqtri 2754 | . . 3 ⊢ (1st ‘𝑈) = 〈 + , · 〉 |
| 12 | 11 | fveq2i 6825 | . 2 ⊢ (1st ‘(1st ‘𝑈)) = (1st ‘〈 + , · 〉) |
| 13 | addex 12887 | . . 3 ⊢ + ∈ V | |
| 14 | mulex 12889 | . . 3 ⊢ · ∈ V | |
| 15 | 13, 14 | op1st 7929 | . 2 ⊢ (1st ‘〈 + , · 〉) = + |
| 16 | 2, 12, 15 | 3eqtrri 2759 | 1 ⊢ + = ( +𝑣 ‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ⟶wf 6477 ‘cfv 6481 1st c1st 7919 ℂcc 11004 ℝcr 11005 + caddc 11009 · cmul 11011 abscabs 15141 +𝑣 cpv 30565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-va 30575 |
| This theorem is referenced by: cnnvba 30659 cnnvm 30662 ipblnfi 30835 |
| Copyright terms: Public domain | W3C validator |