![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnnvg | Structured version Visualization version GIF version |
Description: The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnvg.6 | β’ π = β¨β¨ + , Β· β©, absβ© |
Ref | Expression |
---|---|
cnnvg | β’ + = ( +π£ βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ ( +π£ βπ) = ( +π£ βπ) | |
2 | 1 | vafval 29856 | . 2 β’ ( +π£ βπ) = (1st β(1st βπ)) |
3 | cnnvg.6 | . . . . 5 β’ π = β¨β¨ + , Β· β©, absβ© | |
4 | 3 | fveq2i 6895 | . . . 4 β’ (1st βπ) = (1st ββ¨β¨ + , Β· β©, absβ©) |
5 | opex 5465 | . . . . 5 β’ β¨ + , Β· β© β V | |
6 | absf 15284 | . . . . . 6 β’ abs:ββΆβ | |
7 | cnex 11191 | . . . . . 6 β’ β β V | |
8 | fex 7228 | . . . . . 6 β’ ((abs:ββΆβ β§ β β V) β abs β V) | |
9 | 6, 7, 8 | mp2an 691 | . . . . 5 β’ abs β V |
10 | 5, 9 | op1st 7983 | . . . 4 β’ (1st ββ¨β¨ + , Β· β©, absβ©) = β¨ + , Β· β© |
11 | 4, 10 | eqtri 2761 | . . 3 β’ (1st βπ) = β¨ + , Β· β© |
12 | 11 | fveq2i 6895 | . 2 β’ (1st β(1st βπ)) = (1st ββ¨ + , Β· β©) |
13 | addex 12972 | . . 3 β’ + β V | |
14 | mulex 12973 | . . 3 β’ Β· β V | |
15 | 13, 14 | op1st 7983 | . 2 β’ (1st ββ¨ + , Β· β©) = + |
16 | 2, 12, 15 | 3eqtrri 2766 | 1 β’ + = ( +π£ βπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 Vcvv 3475 β¨cop 4635 βΆwf 6540 βcfv 6544 1st c1st 7973 βcc 11108 βcr 11109 + caddc 11113 Β· cmul 11115 abscabs 15181 +π£ cpv 29838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-va 29848 |
This theorem is referenced by: cnnvba 29932 cnnvm 29935 ipblnfi 30108 |
Copyright terms: Public domain | W3C validator |