![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnnvg | Structured version Visualization version GIF version |
Description: The vector addition (group) operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnvg.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
Ref | Expression |
---|---|
cnnvg | ⊢ + = ( +𝑣 ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | 1 | vafval 28147 | . 2 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
3 | cnnvg.6 | . . . . 5 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
4 | 3 | fveq2i 6496 | . . . 4 ⊢ (1st ‘𝑈) = (1st ‘〈〈 + , · 〉, abs〉) |
5 | opex 5206 | . . . . 5 ⊢ 〈 + , · 〉 ∈ V | |
6 | absf 14548 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
7 | cnex 10408 | . . . . . 6 ⊢ ℂ ∈ V | |
8 | fex 6809 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V) | |
9 | 6, 7, 8 | mp2an 679 | . . . . 5 ⊢ abs ∈ V |
10 | 5, 9 | op1st 7502 | . . . 4 ⊢ (1st ‘〈〈 + , · 〉, abs〉) = 〈 + , · 〉 |
11 | 4, 10 | eqtri 2796 | . . 3 ⊢ (1st ‘𝑈) = 〈 + , · 〉 |
12 | 11 | fveq2i 6496 | . 2 ⊢ (1st ‘(1st ‘𝑈)) = (1st ‘〈 + , · 〉) |
13 | addex 12195 | . . 3 ⊢ + ∈ V | |
14 | mulex 12196 | . . 3 ⊢ · ∈ V | |
15 | 13, 14 | op1st 7502 | . 2 ⊢ (1st ‘〈 + , · 〉) = + |
16 | 2, 12, 15 | 3eqtrri 2801 | 1 ⊢ + = ( +𝑣 ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2048 Vcvv 3409 〈cop 4441 ⟶wf 6178 ‘cfv 6182 1st c1st 7492 ℂcc 10325 ℝcr 10326 + caddc 10330 · cmul 10332 abscabs 14444 +𝑣 cpv 28129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 ax-addf 10406 ax-mulf 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-sup 8693 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-z 11787 df-uz 12052 df-rp 12198 df-seq 13178 df-exp 13238 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-va 28139 |
This theorem is referenced by: cnnvba 28223 cnnvm 28226 ipblnfi 28400 |
Copyright terms: Public domain | W3C validator |