![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nacsfg | Structured version Visualization version GIF version |
Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
isnacs.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
nacsfg | ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnacs.f | . . . . 5 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | isnacs 42124 | . . . 4 ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) |
3 | 2 | simprbi 496 | . . 3 ⊢ (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)) |
4 | eqeq1 2732 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 = (𝐹‘𝑔) ↔ 𝑆 = (𝐹‘𝑔))) | |
5 | 4 | rexbidv 3175 | . . . 4 ⊢ (𝑠 = 𝑆 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
6 | 5 | rspcva 3607 | . . 3 ⊢ ((𝑆 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
7 | 3, 6 | sylan2 592 | . 2 ⊢ ((𝑆 ∈ 𝐶 ∧ 𝐶 ∈ (NoeACS‘𝑋)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
8 | 7 | ancoms 458 | 1 ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ∩ cin 3946 𝒫 cpw 4603 ‘cfv 6548 Fincfn 8964 mrClscmrc 17563 ACScacs 17565 NoeACScnacs 42122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-nacs 42123 |
This theorem is referenced by: isnacs3 42130 |
Copyright terms: Public domain | W3C validator |