![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nacsfg | Structured version Visualization version GIF version |
Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
isnacs.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
nacsfg | ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnacs.f | . . . . 5 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | isnacs 41074 | . . . 4 ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) |
3 | 2 | simprbi 498 | . . 3 ⊢ (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)) |
4 | eqeq1 2737 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 = (𝐹‘𝑔) ↔ 𝑆 = (𝐹‘𝑔))) | |
5 | 4 | rexbidv 3172 | . . . 4 ⊢ (𝑠 = 𝑆 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
6 | 5 | rspcva 3581 | . . 3 ⊢ ((𝑆 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
7 | 3, 6 | sylan2 594 | . 2 ⊢ ((𝑆 ∈ 𝐶 ∧ 𝐶 ∈ (NoeACS‘𝑋)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
8 | 7 | ancoms 460 | 1 ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ∩ cin 3913 𝒫 cpw 4564 ‘cfv 6500 Fincfn 8889 mrClscmrc 17471 ACScacs 17473 NoeACScnacs 41072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-iota 6452 df-fun 6502 df-fv 6508 df-nacs 41073 |
This theorem is referenced by: isnacs3 41080 |
Copyright terms: Public domain | W3C validator |