| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nacsfg | Structured version Visualization version GIF version | ||
| Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| isnacs.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| nacsfg | ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnacs.f | . . . . 5 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 2 | 1 | isnacs 42736 | . . . 4 ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) |
| 3 | 2 | simprbi 496 | . . 3 ⊢ (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)) |
| 4 | eqeq1 2735 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 = (𝐹‘𝑔) ↔ 𝑆 = (𝐹‘𝑔))) | |
| 5 | 4 | rexbidv 3156 | . . . 4 ⊢ (𝑠 = 𝑆 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔))) |
| 6 | 5 | rspcva 3575 | . . 3 ⊢ ((𝑆 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
| 7 | 3, 6 | sylan2 593 | . 2 ⊢ ((𝑆 ∈ 𝐶 ∧ 𝐶 ∈ (NoeACS‘𝑋)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
| 8 | 7 | ancoms 458 | 1 ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 𝒫 cpw 4550 ‘cfv 6481 Fincfn 8869 mrClscmrc 17482 ACScacs 17484 NoeACScnacs 42734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-nacs 42735 |
| This theorem is referenced by: isnacs3 42742 |
| Copyright terms: Public domain | W3C validator |