Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfg Structured version   Visualization version   GIF version

Theorem nacsfg 42693
Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
nacsfg ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem nacsfg
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . . . 5 𝐹 = (mrCls‘𝐶)
21isnacs 42692 . . . 4 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
32simprbi 496 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔))
4 eqeq1 2733 . . . . 5 (𝑠 = 𝑆 → (𝑠 = (𝐹𝑔) ↔ 𝑆 = (𝐹𝑔)))
54rexbidv 3157 . . . 4 (𝑠 = 𝑆 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔)))
65rspcva 3586 . . 3 ((𝑆𝐶 ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
73, 6sylan2 593 . 2 ((𝑆𝐶𝐶 ∈ (NoeACS‘𝑋)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
87ancoms 458 1 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3913  𝒫 cpw 4563  cfv 6511  Fincfn 8918  mrClscmrc 17544  ACScacs 17546  NoeACScnacs 42690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-nacs 42691
This theorem is referenced by:  isnacs3  42698
  Copyright terms: Public domain W3C validator