Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfg Structured version   Visualization version   GIF version

Theorem nacsfg 42663
Description: In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
nacsfg ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑆,𝑔   𝑔,𝑋

Proof of Theorem nacsfg
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . . . 5 𝐹 = (mrCls‘𝐶)
21isnacs 42662 . . . 4 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
32simprbi 496 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔))
4 eqeq1 2744 . . . . 5 (𝑠 = 𝑆 → (𝑠 = (𝐹𝑔) ↔ 𝑆 = (𝐹𝑔)))
54rexbidv 3185 . . . 4 (𝑠 = 𝑆 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔)))
65rspcva 3633 . . 3 ((𝑆𝐶 ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
73, 6sylan2 592 . 2 ((𝑆𝐶𝐶 ∈ (NoeACS‘𝑋)) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
87ancoms 458 1 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  𝒫 cpw 4622  cfv 6575  Fincfn 9005  mrClscmrc 17643  ACScacs 17645  NoeACScnacs 42660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-nacs 42661
This theorem is referenced by:  isnacs3  42668
  Copyright terms: Public domain W3C validator