Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs2 Structured version   Visualization version   GIF version

Theorem isnacs2 42745
Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isnacs2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))

Proof of Theorem isnacs2
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . 3 𝐹 = (mrCls‘𝐶)
21isnacs 42743 . 2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
3 eqcom 2738 . . . . . . . 8 (𝑠 = (𝐹𝑔) ↔ (𝐹𝑔) = 𝑠)
43rexbii 3079 . . . . . . 7 (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠)
5 acsmre 17558 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
61mrcf 17515 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
7 ffn 6651 . . . . . . . . 9 (𝐹:𝒫 𝑋𝐶𝐹 Fn 𝒫 𝑋)
85, 6, 73syl 18 . . . . . . . 8 (𝐶 ∈ (ACS‘𝑋) → 𝐹 Fn 𝒫 𝑋)
9 inss1 4187 . . . . . . . 8 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fvelimab 6894 . . . . . . . 8 ((𝐹 Fn 𝒫 𝑋 ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
118, 9, 10sylancl 586 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
124, 11bitr4id 290 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
1312ralbidv 3155 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
14 dfss3 3923 . . . . 5 (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)))
1513, 14bitr4di 289 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
16 imassrn 6020 . . . . . . 7 (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ ran 𝐹
17 frn 6658 . . . . . . . 8 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
185, 6, 173syl 18 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → ran 𝐹𝐶)
1916, 18sstrid 3946 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶)
2019biantrurd 532 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)))))
21 eqss 3950 . . . . 5 ((𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶 ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
2220, 21bitr4di 289 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2315, 22bitrd 279 . . 3 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2423pm5.32i 574 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
252, 24bitri 275 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3901  wss 3902  𝒫 cpw 4550  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  Fincfn 8869  Moorecmre 17484  mrClscmrc 17485  ACScacs 17487  NoeACScnacs 42741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-mre 17488  df-mrc 17489  df-acs 17491  df-nacs 42742
This theorem is referenced by:  nacsacs  42748
  Copyright terms: Public domain W3C validator