Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs2 Structured version   Visualization version   GIF version

Theorem isnacs2 40444
Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isnacs2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))

Proof of Theorem isnacs2
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . 3 𝐹 = (mrCls‘𝐶)
21isnacs 40442 . 2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
3 eqcom 2745 . . . . . . . 8 (𝑠 = (𝐹𝑔) ↔ (𝐹𝑔) = 𝑠)
43rexbii 3177 . . . . . . 7 (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠)
5 acsmre 17278 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
61mrcf 17235 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
7 ffn 6584 . . . . . . . . 9 (𝐹:𝒫 𝑋𝐶𝐹 Fn 𝒫 𝑋)
85, 6, 73syl 18 . . . . . . . 8 (𝐶 ∈ (ACS‘𝑋) → 𝐹 Fn 𝒫 𝑋)
9 inss1 4159 . . . . . . . 8 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fvelimab 6823 . . . . . . . 8 ((𝐹 Fn 𝒫 𝑋 ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
118, 9, 10sylancl 585 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
124, 11bitr4id 289 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
1312ralbidv 3120 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
14 dfss3 3905 . . . . 5 (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)))
1513, 14bitr4di 288 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
16 imassrn 5969 . . . . . . 7 (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ ran 𝐹
17 frn 6591 . . . . . . . 8 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
185, 6, 173syl 18 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → ran 𝐹𝐶)
1916, 18sstrid 3928 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶)
2019biantrurd 532 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)))))
21 eqss 3932 . . . . 5 ((𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶 ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
2220, 21bitr4di 288 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2315, 22bitrd 278 . . 3 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2423pm5.32i 574 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
252, 24bitri 274 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  NoeACScnacs 40440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213  df-acs 17215  df-nacs 40441
This theorem is referenced by:  nacsacs  40447
  Copyright terms: Public domain W3C validator