Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs2 Structured version   Visualization version   GIF version

Theorem isnacs2 40084
Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isnacs2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))

Proof of Theorem isnacs2
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . 3 𝐹 = (mrCls‘𝐶)
21isnacs 40082 . 2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
3 eqcom 2745 . . . . . . . 8 (𝑠 = (𝐹𝑔) ↔ (𝐹𝑔) = 𝑠)
43rexbii 3160 . . . . . . 7 (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠)
5 acsmre 17019 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
61mrcf 16976 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
7 ffn 6498 . . . . . . . . 9 (𝐹:𝒫 𝑋𝐶𝐹 Fn 𝒫 𝑋)
85, 6, 73syl 18 . . . . . . . 8 (𝐶 ∈ (ACS‘𝑋) → 𝐹 Fn 𝒫 𝑋)
9 inss1 4117 . . . . . . . 8 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fvelimab 6735 . . . . . . . 8 ((𝐹 Fn 𝒫 𝑋 ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
118, 9, 10sylancl 589 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
124, 11bitr4id 293 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
1312ralbidv 3109 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
14 dfss3 3863 . . . . 5 (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)))
1513, 14bitr4di 292 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
16 imassrn 5908 . . . . . . 7 (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ ran 𝐹
17 frn 6505 . . . . . . . 8 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
185, 6, 173syl 18 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → ran 𝐹𝐶)
1916, 18sstrid 3886 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶)
2019biantrurd 536 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)))))
21 eqss 3890 . . . . 5 ((𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶 ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
2220, 21bitr4di 292 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2315, 22bitrd 282 . . 3 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2423pm5.32i 578 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
252, 24bitri 278 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053  wrex 3054  cin 3840  wss 3841  𝒫 cpw 4485  ran crn 5520  cima 5522   Fn wfn 6328  wf 6329  cfv 6333  Fincfn 8548  Moorecmre 16949  mrClscmrc 16950  ACScacs 16952  NoeACScnacs 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-int 4834  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-fv 6341  df-mre 16953  df-mrc 16954  df-acs 16956  df-nacs 40081
This theorem is referenced by:  nacsacs  40087
  Copyright terms: Public domain W3C validator