Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs2 Structured version   Visualization version   GIF version

Theorem isnacs2 40528
Description: Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isnacs2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))

Proof of Theorem isnacs2
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnacs.f . . 3 𝐹 = (mrCls‘𝐶)
21isnacs 40526 . 2 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
3 eqcom 2745 . . . . . . . 8 (𝑠 = (𝐹𝑔) ↔ (𝐹𝑔) = 𝑠)
43rexbii 3181 . . . . . . 7 (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠)
5 acsmre 17361 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
61mrcf 17318 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
7 ffn 6600 . . . . . . . . 9 (𝐹:𝒫 𝑋𝐶𝐹 Fn 𝒫 𝑋)
85, 6, 73syl 18 . . . . . . . 8 (𝐶 ∈ (ACS‘𝑋) → 𝐹 Fn 𝒫 𝑋)
9 inss1 4162 . . . . . . . 8 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fvelimab 6841 . . . . . . . 8 ((𝐹 Fn 𝒫 𝑋 ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
118, 9, 10sylancl 586 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → (𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑔) = 𝑠))
124, 11bitr4id 290 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
1312ralbidv 3112 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
14 dfss3 3909 . . . . 5 (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ∀𝑠𝐶 𝑠 ∈ (𝐹 “ (𝒫 𝑋 ∩ Fin)))
1513, 14bitr4di 289 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ 𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
16 imassrn 5980 . . . . . . 7 (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ ran 𝐹
17 frn 6607 . . . . . . . 8 (𝐹:𝒫 𝑋𝐶 → ran 𝐹𝐶)
185, 6, 173syl 18 . . . . . . 7 (𝐶 ∈ (ACS‘𝑋) → ran 𝐹𝐶)
1916, 18sstrid 3932 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶)
2019biantrurd 533 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)))))
21 eqss 3936 . . . . 5 ((𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶 ↔ ((𝐹 “ (𝒫 𝑋 ∩ Fin)) ⊆ 𝐶𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin))))
2220, 21bitr4di 289 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ⊆ (𝐹 “ (𝒫 𝑋 ∩ Fin)) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2315, 22bitrd 278 . . 3 (𝐶 ∈ (ACS‘𝑋) → (∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔) ↔ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
2423pm5.32i 575 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
252, 24bitri 274 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  Fincfn 8733  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294  NoeACScnacs 40524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296  df-acs 17298  df-nacs 40525
This theorem is referenced by:  nacsacs  40531
  Copyright terms: Public domain W3C validator