Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs3 Structured version   Visualization version   GIF version

Theorem isnacs3 40448
Description: A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
isnacs3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isnacs3
Dummy variables 𝑔 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nacsacs 40447 . . . 4 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋))
21acsmred 17282 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
3 simpll 763 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (NoeACS‘𝑋))
41ad2antrr 722 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (ACS‘𝑋))
5 elpwi 4539 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
65ad2antlr 723 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
7 simpr 484 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (toInc‘𝑠) ∈ Dirset)
8 acsdrsel 18176 . . . . . . . . 9 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠𝐶 ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
94, 6, 7, 8syl3anc 1369 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
10 eqid 2738 . . . . . . . . 9 (mrCls‘𝐶) = (mrCls‘𝐶)
1110nacsfg 40443 . . . . . . . 8 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
123, 9, 11syl2anc 583 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
1310mrefg2 40445 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
142, 13syl 17 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1514ad2antrr 722 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1612, 15mpbid 231 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
17 elfpw 9051 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑔 𝑠𝑔 ∈ Fin))
18 fissuni 9054 . . . . . . . . 9 ((𝑔 𝑠𝑔 ∈ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
1917, 18sylbi 216 . . . . . . . 8 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
20 elfpw 9051 . . . . . . . . . . . 12 ( ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑠 ∈ Fin))
21 ipodrsfi 18172 . . . . . . . . . . . . 13 (((toInc‘𝑠) ∈ Dirset ∧ 𝑠 ∈ Fin) → ∃𝑖𝑠 𝑖)
22213expb 1118 . . . . . . . . . . . 12 (((toInc‘𝑠) ∈ Dirset ∧ (𝑠 ∈ Fin)) → ∃𝑖𝑠 𝑖)
2320, 22sylan2b 593 . . . . . . . . . . 11 (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑖𝑠 𝑖)
24 sstr 3925 . . . . . . . . . . . . . . 15 ((𝑔 𝑖) → 𝑔𝑖)
2524ancoms 458 . . . . . . . . . . . . . 14 (( 𝑖𝑔 ) → 𝑔𝑖)
26 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = ((mrCls‘𝐶)‘𝑔))
272ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝐶 ∈ (Moore‘𝑋))
28 simprr 769 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑔𝑖)
295ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑠𝐶)
30 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝑠)
3129, 30sseldd 3918 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝐶)
3210mrcsscl 17246 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑖𝑖𝐶) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3327, 28, 31, 32syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3433adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3526, 34eqsstrd 3955 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑖)
36 simplrl 773 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖𝑠)
37 elssuni 4868 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑠𝑖 𝑠)
3836, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖 𝑠)
3935, 38eqssd 3934 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = 𝑖)
4039, 36eqeltrd 2839 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑠)
4140ex 412 . . . . . . . . . . . . . . 15 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
4241expr 456 . . . . . . . . . . . . . 14 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (𝑔𝑖 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4325, 42syl5 34 . . . . . . . . . . . . 13 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (( 𝑖𝑔 ) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4443expd 415 . . . . . . . . . . . 12 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → ( 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4544rexlimdva 3212 . . . . . . . . . . 11 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (∃𝑖𝑠 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4623, 45syl5 34 . . . . . . . . . 10 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4746expdimp 452 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( ∈ (𝒫 𝑠 ∩ Fin) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4847rexlimdv 3211 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4919, 48syl5 34 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
5049rexlimdv 3211 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
5116, 50mpd 15 . . . . 5 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑠)
5251ex 412 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
5352ralrimiva 3107 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
542, 53jca 511 . 2 (𝐶 ∈ (NoeACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
55 simpl 482 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (Moore‘𝑋))
565adantl 481 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
5756sseld 3916 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ( 𝑠𝑠 𝑠𝐶))
5857imim2d 57 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
5958ralimdva 3102 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6059imp 406 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
61 isacs3 18183 . . . 4 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6255, 60, 61sylanbrc 582 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (ACS‘𝑋))
6310mrcid 17239 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6463adantlr 711 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6562adantr 480 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝐶 ∈ (ACS‘𝑋))
66 mress 17219 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝑡𝑋)
6766adantlr 711 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡𝑋)
6865, 10, 67acsficld 18184 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
6964, 68eqtr3d 2780 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
7010mrcf 17235 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶):𝒫 𝑋𝐶)
7170ffnd 6585 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7271adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7310mrcss 17242 . . . . . . . . . . . . 13 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
74733expb 1118 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
7574adantlr 711 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
76 vex 3426 . . . . . . . . . . . 12 𝑡 ∈ V
77 fpwipodrs 18173 . . . . . . . . . . . 12 (𝑡 ∈ V → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
7876, 77mp1i 13 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
79 inss1 4159 . . . . . . . . . . . 12 (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑡
8066sspwd 4545 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝒫 𝑡 ⊆ 𝒫 𝑋)
8179, 80sstrid 3928 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋)
82 fvex 6769 . . . . . . . . . . . . 13 (mrCls‘𝐶) ∈ V
83 imaexg 7736 . . . . . . . . . . . . 13 ((mrCls‘𝐶) ∈ V → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8482, 83ax-mp 5 . . . . . . . . . . . 12 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V
8584a1i 11 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8672, 75, 78, 81, 85ipodrsima 18174 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
8786adantlr 711 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
88 imassrn 5969 . . . . . . . . . . . . . 14 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ ran (mrCls‘𝐶)
8970frnd 6592 . . . . . . . . . . . . . 14 (𝐶 ∈ (Moore‘𝑋) → ran (mrCls‘𝐶) ⊆ 𝐶)
9088, 89sstrid 3928 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9190adantr 480 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9284elpw 4534 . . . . . . . . . . . 12 (((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ↔ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9391, 92sylibr 233 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
9493adantlr 711 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
95 simplr 765 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
96 fveq2 6756 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (toInc‘𝑠) = (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
9796eleq1d 2823 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset))
98 unieq 4847 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
99 id 22 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
10098, 99eleq12d 2833 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ( 𝑠𝑠 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10197, 100imbi12d 344 . . . . . . . . . . 11 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) ↔ ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))))
102101rspcva 3550 . . . . . . . . . 10 ((((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10394, 95, 102syl2anc 583 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10487, 103mpd 15 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
10569, 104eqeltrd 2839 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
106 fvelimab 6823 . . . . . . . . 9 (((mrCls‘𝐶) Fn 𝒫 𝑋 ∧ (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
10772, 81, 106syl2anc 583 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
108107adantlr 711 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
109105, 108mpbid 231 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
110 eqcom 2745 . . . . . . 7 (𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ((mrCls‘𝐶)‘𝑔) = 𝑡)
111110rexbii 3177 . . . . . 6 (∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
112109, 111sylibr 233 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
11310mrefg2 40445 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
114113ad2antrr 722 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
115112, 114mpbird 256 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
116115ralrimiva 3107 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
11710isnacs 40442 . . 3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
11862, 116, 117sylanbrc 582 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (NoeACS‘𝑋))
11954, 118impbii 208 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  ran crn 5581  cima 5583   Fn wfn 6413  cfv 6418  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Dirsetcdrs 17927  toInccipo 18160  NoeACScnacs 40440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-tset 16907  df-ple 16908  df-ocomp 16909  df-mre 17212  df-mrc 17213  df-acs 17215  df-proset 17928  df-drs 17929  df-poset 17946  df-ipo 18161  df-nacs 40441
This theorem is referenced by:  nacsfix  40450
  Copyright terms: Public domain W3C validator