Step | Hyp | Ref
| Expression |
1 | | nacsacs 40447 |
. . . 4
⊢ (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋)) |
2 | 1 | acsmred 17282 |
. . 3
⊢ (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
3 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (NoeACS‘𝑋)) |
4 | 1 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (ACS‘𝑋)) |
5 | | elpwi 4539 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝒫 𝐶 → 𝑠 ⊆ 𝐶) |
6 | 5 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠 ⊆ 𝐶) |
7 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (toInc‘𝑠) ∈
Dirset) |
8 | | acsdrsel 18176 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ⊆ 𝐶 ∧ (toInc‘𝑠) ∈ Dirset) → ∪ 𝑠
∈ 𝐶) |
9 | 4, 6, 7, 8 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∪ 𝑠
∈ 𝐶) |
10 | | eqid 2738 |
. . . . . . . . 9
⊢
(mrCls‘𝐶) =
(mrCls‘𝐶) |
11 | 10 | nacsfg 40443 |
. . . . . . . 8
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ ∪ 𝑠
∈ 𝐶) →
∃𝑔 ∈ (𝒫
𝑋 ∩ Fin)∪ 𝑠 =
((mrCls‘𝐶)‘𝑔)) |
12 | 3, 9, 11 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑠 =
((mrCls‘𝐶)‘𝑔)) |
13 | 10 | mrefg2 40445 |
. . . . . . . . 9
⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin)∪ 𝑠 = ((mrCls‘𝐶)‘𝑔))) |
14 | 2, 13 | syl 17 |
. . . . . . . 8
⊢ (𝐶 ∈ (NoeACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin)∪ 𝑠 = ((mrCls‘𝐶)‘𝑔))) |
15 | 14 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin)∪ 𝑠 = ((mrCls‘𝐶)‘𝑔))) |
16 | 12, 15 | mpbid 231 |
. . . . . 6
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin)∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) |
17 | | elfpw 9051 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin) ↔ (𝑔
⊆ ∪ 𝑠 ∧ 𝑔 ∈ Fin)) |
18 | | fissuni 9054 |
. . . . . . . . 9
⊢ ((𝑔 ⊆ ∪ 𝑠
∧ 𝑔 ∈ Fin) →
∃ℎ ∈ (𝒫
𝑠 ∩ Fin)𝑔 ⊆ ∪ ℎ) |
19 | 17, 18 | sylbi 216 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin) → ∃ℎ
∈ (𝒫 𝑠 ∩
Fin)𝑔 ⊆ ∪ ℎ) |
20 | | elfpw 9051 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ (𝒫 𝑠 ∩ Fin) ↔ (ℎ ⊆ 𝑠 ∧ ℎ ∈ Fin)) |
21 | | ipodrsfi 18172 |
. . . . . . . . . . . . 13
⊢
(((toInc‘𝑠)
∈ Dirset ∧ ℎ
⊆ 𝑠 ∧ ℎ ∈ Fin) → ∃𝑖 ∈ 𝑠 ∪ ℎ ⊆ 𝑖) |
22 | 21 | 3expb 1118 |
. . . . . . . . . . . 12
⊢
(((toInc‘𝑠)
∈ Dirset ∧ (ℎ
⊆ 𝑠 ∧ ℎ ∈ Fin)) → ∃𝑖 ∈ 𝑠 ∪ ℎ ⊆ 𝑖) |
23 | 20, 22 | sylan2b 593 |
. . . . . . . . . . 11
⊢
(((toInc‘𝑠)
∈ Dirset ∧ ℎ ∈
(𝒫 𝑠 ∩ Fin))
→ ∃𝑖 ∈
𝑠 ∪ ℎ
⊆ 𝑖) |
24 | | sstr 3925 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ⊆ ∪ ℎ
∧ ∪ ℎ ⊆ 𝑖) → 𝑔 ⊆ 𝑖) |
25 | 24 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ ((∪ ℎ
⊆ 𝑖 ∧ 𝑔 ⊆ ∪ ℎ)
→ 𝑔 ⊆ 𝑖) |
26 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) ∧ ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) |
27 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) → 𝐶 ∈ (Moore‘𝑋)) |
28 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) → 𝑔 ⊆ 𝑖) |
29 | 5 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) → 𝑠 ⊆ 𝐶) |
30 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) → 𝑖 ∈ 𝑠) |
31 | 29, 30 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) → 𝑖 ∈ 𝐶) |
32 | 10 | mrcsscl 17246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ 𝑖 ∧ 𝑖 ∈ 𝐶) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖) |
33 | 27, 28, 31, 32 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) ∧ ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖) |
35 | 26, 34 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) ∧ ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ∪ 𝑠 ⊆ 𝑖) |
36 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) ∧ ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖 ∈ 𝑠) |
37 | | elssuni 4868 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ 𝑠 → 𝑖 ⊆ ∪ 𝑠) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) ∧ ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖 ⊆ ∪ 𝑠) |
39 | 35, 38 | eqssd 3934 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) ∧ ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ∪ 𝑠 = 𝑖) |
40 | 39, 36 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) ∧ ∪ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ∪ 𝑠 ∈ 𝑠) |
41 | 40 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖 ∈ 𝑠 ∧ 𝑔 ⊆ 𝑖)) → (∪ 𝑠 = ((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠)) |
42 | 41 | expr 456 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖 ∈ 𝑠) → (𝑔 ⊆ 𝑖 → (∪ 𝑠 = ((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠))) |
43 | 25, 42 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖 ∈ 𝑠) → ((∪ ℎ ⊆ 𝑖 ∧ 𝑔 ⊆ ∪ ℎ) → (∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠))) |
44 | 43 | expd 415 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖 ∈ 𝑠) → (∪ ℎ ⊆ 𝑖 → (𝑔 ⊆ ∪ ℎ → (∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠)))) |
45 | 44 | rexlimdva 3212 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (∃𝑖 ∈ 𝑠 ∪ ℎ ⊆ 𝑖 → (𝑔 ⊆ ∪ ℎ → (∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠)))) |
46 | 23, 45 | syl5 34 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset ∧ ℎ ∈ (𝒫 𝑠 ∩ Fin)) → (𝑔 ⊆ ∪ ℎ → (∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠)))) |
47 | 46 | expdimp 452 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (ℎ ∈ (𝒫 𝑠 ∩ Fin) → (𝑔 ⊆ ∪ ℎ → (∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠)))) |
48 | 47 | rexlimdv 3211 |
. . . . . . . 8
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃ℎ ∈ (𝒫 𝑠 ∩ Fin)𝑔 ⊆ ∪ ℎ → (∪ 𝑠 =
((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠))) |
49 | 19, 48 | syl5 34 |
. . . . . . 7
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin) → (∪ 𝑠 = ((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠))) |
50 | 49 | rexlimdv 3211 |
. . . . . 6
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 ∪ 𝑠
∩ Fin)∪ 𝑠 = ((mrCls‘𝐶)‘𝑔) → ∪ 𝑠 ∈ 𝑠)) |
51 | 16, 50 | mpd 15 |
. . . . 5
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∪ 𝑠
∈ 𝑠) |
52 | 51 | ex 412 |
. . . 4
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) |
53 | 52 | ralrimiva 3107 |
. . 3
⊢ (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) |
54 | 2, 53 | jca 511 |
. 2
⊢ (𝐶 ∈ (NoeACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠))) |
55 | | simpl 482 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) → 𝐶 ∈ (Moore‘𝑋)) |
56 | 5 | adantl 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ⊆ 𝐶) |
57 | 56 | sseld 3916 |
. . . . . . 7
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (∪ 𝑠 ∈ 𝑠 → ∪ 𝑠 ∈ 𝐶)) |
58 | 57 | imim2d 57 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠) →
((toInc‘𝑠) ∈
Dirset → ∪ 𝑠 ∈ 𝐶))) |
59 | 58 | ralimdva 3102 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠) →
∀𝑠 ∈ 𝒫
𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝐶))) |
60 | 59 | imp 406 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) →
∀𝑠 ∈ 𝒫
𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝐶)) |
61 | | isacs3 18183 |
. . . 4
⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝐶))) |
62 | 55, 60, 61 | sylanbrc 582 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) → 𝐶 ∈ (ACS‘𝑋)) |
63 | 10 | mrcid 17239 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡) |
64 | 63 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡) |
65 | 62 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → 𝐶 ∈ (ACS‘𝑋)) |
66 | | mress 17219 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → 𝑡 ⊆ 𝑋) |
67 | 66 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → 𝑡 ⊆ 𝑋) |
68 | 65, 10, 67 | acsficld 18184 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ((mrCls‘𝐶)‘𝑡) = ∪
((mrCls‘𝐶) “
(𝒫 𝑡 ∩
Fin))) |
69 | 64, 68 | eqtr3d 2780 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → 𝑡 = ∪
((mrCls‘𝐶) “
(𝒫 𝑡 ∩
Fin))) |
70 | 10 | mrcf 17235 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶):𝒫 𝑋⟶𝐶) |
71 | 70 | ffnd 6585 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) Fn 𝒫 𝑋) |
72 | 71 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → (mrCls‘𝐶) Fn 𝒫 𝑋) |
73 | 10 | mrcss 17242 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔 ⊆ ℎ ∧ ℎ ⊆ 𝑋) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘ℎ)) |
74 | 73 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑔 ⊆ ℎ ∧ ℎ ⊆ 𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘ℎ)) |
75 | 74 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) ∧ (𝑔 ⊆ ℎ ∧ ℎ ⊆ 𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘ℎ)) |
76 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑡 ∈ V |
77 | | fpwipodrs 18173 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ V →
(toInc‘(𝒫 𝑡
∩ Fin)) ∈ Dirset) |
78 | 76, 77 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈
Dirset) |
79 | | inss1 4159 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑡 ∩
Fin) ⊆ 𝒫 𝑡 |
80 | 66 | sspwd 4545 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → 𝒫 𝑡 ⊆ 𝒫 𝑋) |
81 | 79, 80 | sstrid 3928 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋) |
82 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢
(mrCls‘𝐶)
∈ V |
83 | | imaexg 7736 |
. . . . . . . . . . . . 13
⊢
((mrCls‘𝐶)
∈ V → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V) |
84 | 82, 83 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((mrCls‘𝐶)
“ (𝒫 𝑡 ∩
Fin)) ∈ V |
85 | 84 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V) |
86 | 72, 75, 78, 81, 85 | ipodrsima 18174 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈
Dirset) |
87 | 86 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈
Dirset) |
88 | | imassrn 5969 |
. . . . . . . . . . . . . 14
⊢
((mrCls‘𝐶)
“ (𝒫 𝑡 ∩
Fin)) ⊆ ran (mrCls‘𝐶) |
89 | 70 | frnd 6592 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ (Moore‘𝑋) → ran (mrCls‘𝐶) ⊆ 𝐶) |
90 | 88, 89 | sstrid 3928 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (Moore‘𝑋) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶) |
91 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶) |
92 | 84 | elpw 4534 |
. . . . . . . . . . . 12
⊢
(((mrCls‘𝐶)
“ (𝒫 𝑡 ∩
Fin)) ∈ 𝒫 𝐶
↔ ((mrCls‘𝐶)
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝐶) |
93 | 91, 92 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶) |
94 | 93 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶) |
95 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) |
96 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) →
(toInc‘𝑠) =
(toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))) |
97 | 96 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) →
((toInc‘𝑠) ∈
Dirset ↔ (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈
Dirset)) |
98 | | unieq 4847 |
. . . . . . . . . . . . 13
⊢ (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ∪ 𝑠 =
∪ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) |
99 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) |
100 | 98, 99 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (∪ 𝑠
∈ 𝑠 ↔ ∪ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))) |
101 | 97, 100 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) →
(((toInc‘𝑠) ∈
Dirset → ∪ 𝑠 ∈ 𝑠) ↔ ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset
→ ∪ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))) |
102 | 101 | rspcva 3550 |
. . . . . . . . . 10
⊢
((((mrCls‘𝐶)
“ (𝒫 𝑡 ∩
Fin)) ∈ 𝒫 𝐶
∧ ∀𝑠 ∈
𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) →
((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ∪ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))) |
103 | 94, 95, 102 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset
→ ∪ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))) |
104 | 87, 103 | mpd 15 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ∪
((mrCls‘𝐶) “
(𝒫 𝑡 ∩ Fin))
∈ ((mrCls‘𝐶)
“ (𝒫 𝑡 ∩
Fin))) |
105 | 69, 104 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → 𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) |
106 | | fvelimab 6823 |
. . . . . . . . 9
⊢
(((mrCls‘𝐶) Fn
𝒫 𝑋 ∧
(𝒫 𝑡 ∩ Fin)
⊆ 𝒫 𝑋) →
(𝑡 ∈
((mrCls‘𝐶) “
(𝒫 𝑡 ∩ Fin))
↔ ∃𝑔 ∈
(𝒫 𝑡 ∩
Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)) |
107 | 72, 81, 106 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ∈ 𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)) |
108 | 107 | adantlr 711 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)) |
109 | 105, 108 | mpbid 231 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡) |
110 | | eqcom 2745 |
. . . . . . 7
⊢ (𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ((mrCls‘𝐶)‘𝑔) = 𝑡) |
111 | 110 | rexbii 3177 |
. . . . . 6
⊢
(∃𝑔 ∈
(𝒫 𝑡 ∩
Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡) |
112 | 109, 111 | sylibr 233 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)) |
113 | 10 | mrefg2 40445 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))) |
114 | 113 | ad2antrr 722 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))) |
115 | 112, 114 | mpbird 256 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) ∧ 𝑡 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)) |
116 | 115 | ralrimiva 3107 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) →
∀𝑡 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)) |
117 | 10 | isnacs 40442 |
. . 3
⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑡 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))) |
118 | 62, 116, 117 | sylanbrc 582 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠)) → 𝐶 ∈ (NoeACS‘𝑋)) |
119 | 54, 118 | impbii 208 |
1
⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠
∈ 𝑠))) |