Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs3 Structured version   Visualization version   GIF version

Theorem isnacs3 40532
Description: A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
isnacs3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isnacs3
Dummy variables 𝑔 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nacsacs 40531 . . . 4 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋))
21acsmred 17365 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
3 simpll 764 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (NoeACS‘𝑋))
41ad2antrr 723 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (ACS‘𝑋))
5 elpwi 4542 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
65ad2antlr 724 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
7 simpr 485 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (toInc‘𝑠) ∈ Dirset)
8 acsdrsel 18261 . . . . . . . . 9 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠𝐶 ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
94, 6, 7, 8syl3anc 1370 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
10 eqid 2738 . . . . . . . . 9 (mrCls‘𝐶) = (mrCls‘𝐶)
1110nacsfg 40527 . . . . . . . 8 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
123, 9, 11syl2anc 584 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
1310mrefg2 40529 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
142, 13syl 17 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1514ad2antrr 723 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1612, 15mpbid 231 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
17 elfpw 9121 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑔 𝑠𝑔 ∈ Fin))
18 fissuni 9124 . . . . . . . . 9 ((𝑔 𝑠𝑔 ∈ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
1917, 18sylbi 216 . . . . . . . 8 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
20 elfpw 9121 . . . . . . . . . . . 12 ( ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑠 ∈ Fin))
21 ipodrsfi 18257 . . . . . . . . . . . . 13 (((toInc‘𝑠) ∈ Dirset ∧ 𝑠 ∈ Fin) → ∃𝑖𝑠 𝑖)
22213expb 1119 . . . . . . . . . . . 12 (((toInc‘𝑠) ∈ Dirset ∧ (𝑠 ∈ Fin)) → ∃𝑖𝑠 𝑖)
2320, 22sylan2b 594 . . . . . . . . . . 11 (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑖𝑠 𝑖)
24 sstr 3929 . . . . . . . . . . . . . . 15 ((𝑔 𝑖) → 𝑔𝑖)
2524ancoms 459 . . . . . . . . . . . . . 14 (( 𝑖𝑔 ) → 𝑔𝑖)
26 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = ((mrCls‘𝐶)‘𝑔))
272ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝐶 ∈ (Moore‘𝑋))
28 simprr 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑔𝑖)
295ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑠𝐶)
30 simprl 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝑠)
3129, 30sseldd 3922 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝐶)
3210mrcsscl 17329 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑖𝑖𝐶) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3327, 28, 31, 32syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3433adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3526, 34eqsstrd 3959 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑖)
36 simplrl 774 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖𝑠)
37 elssuni 4871 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑠𝑖 𝑠)
3836, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖 𝑠)
3935, 38eqssd 3938 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = 𝑖)
4039, 36eqeltrd 2839 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑠)
4140ex 413 . . . . . . . . . . . . . . 15 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
4241expr 457 . . . . . . . . . . . . . 14 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (𝑔𝑖 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4325, 42syl5 34 . . . . . . . . . . . . 13 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (( 𝑖𝑔 ) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4443expd 416 . . . . . . . . . . . 12 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → ( 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4544rexlimdva 3213 . . . . . . . . . . 11 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (∃𝑖𝑠 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4623, 45syl5 34 . . . . . . . . . 10 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4746expdimp 453 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( ∈ (𝒫 𝑠 ∩ Fin) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4847rexlimdv 3212 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4919, 48syl5 34 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
5049rexlimdv 3212 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
5116, 50mpd 15 . . . . 5 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑠)
5251ex 413 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
5352ralrimiva 3103 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
542, 53jca 512 . 2 (𝐶 ∈ (NoeACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
55 simpl 483 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (Moore‘𝑋))
565adantl 482 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
5756sseld 3920 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ( 𝑠𝑠 𝑠𝐶))
5857imim2d 57 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
5958ralimdva 3108 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6059imp 407 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
61 isacs3 18268 . . . 4 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6255, 60, 61sylanbrc 583 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (ACS‘𝑋))
6310mrcid 17322 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6463adantlr 712 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6562adantr 481 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝐶 ∈ (ACS‘𝑋))
66 mress 17302 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝑡𝑋)
6766adantlr 712 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡𝑋)
6865, 10, 67acsficld 18269 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
6964, 68eqtr3d 2780 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
7010mrcf 17318 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶):𝒫 𝑋𝐶)
7170ffnd 6601 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7271adantr 481 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7310mrcss 17325 . . . . . . . . . . . . 13 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
74733expb 1119 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
7574adantlr 712 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
76 vex 3436 . . . . . . . . . . . 12 𝑡 ∈ V
77 fpwipodrs 18258 . . . . . . . . . . . 12 (𝑡 ∈ V → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
7876, 77mp1i 13 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
79 inss1 4162 . . . . . . . . . . . 12 (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑡
8066sspwd 4548 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝒫 𝑡 ⊆ 𝒫 𝑋)
8179, 80sstrid 3932 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋)
82 fvex 6787 . . . . . . . . . . . . 13 (mrCls‘𝐶) ∈ V
83 imaexg 7762 . . . . . . . . . . . . 13 ((mrCls‘𝐶) ∈ V → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8482, 83ax-mp 5 . . . . . . . . . . . 12 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V
8584a1i 11 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8672, 75, 78, 81, 85ipodrsima 18259 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
8786adantlr 712 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
88 imassrn 5980 . . . . . . . . . . . . . 14 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ ran (mrCls‘𝐶)
8970frnd 6608 . . . . . . . . . . . . . 14 (𝐶 ∈ (Moore‘𝑋) → ran (mrCls‘𝐶) ⊆ 𝐶)
9088, 89sstrid 3932 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9190adantr 481 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9284elpw 4537 . . . . . . . . . . . 12 (((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ↔ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9391, 92sylibr 233 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
9493adantlr 712 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
95 simplr 766 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
96 fveq2 6774 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (toInc‘𝑠) = (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
9796eleq1d 2823 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset))
98 unieq 4850 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
99 id 22 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
10098, 99eleq12d 2833 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ( 𝑠𝑠 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10197, 100imbi12d 345 . . . . . . . . . . 11 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) ↔ ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))))
102101rspcva 3559 . . . . . . . . . 10 ((((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10394, 95, 102syl2anc 584 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10487, 103mpd 15 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
10569, 104eqeltrd 2839 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
106 fvelimab 6841 . . . . . . . . 9 (((mrCls‘𝐶) Fn 𝒫 𝑋 ∧ (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
10772, 81, 106syl2anc 584 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
108107adantlr 712 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
109105, 108mpbid 231 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
110 eqcom 2745 . . . . . . 7 (𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ((mrCls‘𝐶)‘𝑔) = 𝑡)
111110rexbii 3181 . . . . . 6 (∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
112109, 111sylibr 233 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
11310mrefg2 40529 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
114113ad2antrr 723 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
115112, 114mpbird 256 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
116115ralrimiva 3103 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
11710isnacs 40526 . . 3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
11862, 116, 117sylanbrc 583 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (NoeACS‘𝑋))
11954, 118impbii 208 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  ran crn 5590  cima 5592   Fn wfn 6428  cfv 6433  Fincfn 8733  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294  Dirsetcdrs 18012  toInccipo 18245  NoeACScnacs 40524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-tset 16981  df-ple 16982  df-ocomp 16983  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-drs 18014  df-poset 18031  df-ipo 18246  df-nacs 40525
This theorem is referenced by:  nacsfix  40534
  Copyright terms: Public domain W3C validator