Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs3 Structured version   Visualization version   GIF version

Theorem isnacs3 39648
 Description: A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
isnacs3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isnacs3
Dummy variables 𝑔 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nacsacs 39647 . . . 4 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋))
21acsmred 16923 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
3 simpll 766 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (NoeACS‘𝑋))
41ad2antrr 725 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝐶 ∈ (ACS‘𝑋))
5 elpwi 4509 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
65ad2antlr 726 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
7 simpr 488 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (toInc‘𝑠) ∈ Dirset)
8 acsdrsel 17773 . . . . . . . . 9 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠𝐶 ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
94, 6, 7, 8syl3anc 1368 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
10 eqid 2801 . . . . . . . . 9 (mrCls‘𝐶) = (mrCls‘𝐶)
1110nacsfg 39643 . . . . . . . 8 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
123, 9, 11syl2anc 587 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
1310mrefg2 39645 . . . . . . . . 9 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
142, 13syl 17 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1514ad2antrr 725 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔)))
1612, 15mpbid 235 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔))
17 elfpw 8814 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑔 𝑠𝑔 ∈ Fin))
18 fissuni 8817 . . . . . . . . 9 ((𝑔 𝑠𝑔 ∈ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
1917, 18sylbi 220 . . . . . . . 8 (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 )
20 elfpw 8814 . . . . . . . . . . . 12 ( ∈ (𝒫 𝑠 ∩ Fin) ↔ (𝑠 ∈ Fin))
21 ipodrsfi 17769 . . . . . . . . . . . . 13 (((toInc‘𝑠) ∈ Dirset ∧ 𝑠 ∈ Fin) → ∃𝑖𝑠 𝑖)
22213expb 1117 . . . . . . . . . . . 12 (((toInc‘𝑠) ∈ Dirset ∧ (𝑠 ∈ Fin)) → ∃𝑖𝑠 𝑖)
2320, 22sylan2b 596 . . . . . . . . . . 11 (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑖𝑠 𝑖)
24 sstr 3926 . . . . . . . . . . . . . . 15 ((𝑔 𝑖) → 𝑔𝑖)
2524ancoms 462 . . . . . . . . . . . . . 14 (( 𝑖𝑔 ) → 𝑔𝑖)
26 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = ((mrCls‘𝐶)‘𝑔))
272ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝐶 ∈ (Moore‘𝑋))
28 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑔𝑖)
295ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑠𝐶)
30 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝑠)
3129, 30sseldd 3919 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → 𝑖𝐶)
3210mrcsscl 16887 . . . . . . . . . . . . . . . . . . . . 21 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑖𝑖𝐶) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3327, 28, 31, 32syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3433adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → ((mrCls‘𝐶)‘𝑔) ⊆ 𝑖)
3526, 34eqsstrd 3956 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑖)
36 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖𝑠)
37 elssuni 4833 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑠𝑖 𝑠)
3836, 37syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑖 𝑠)
3935, 38eqssd 3935 . . . . . . . . . . . . . . . . 17 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠 = 𝑖)
4039, 36eqeltrd 2893 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) ∧ 𝑠 = ((mrCls‘𝐶)‘𝑔)) → 𝑠𝑠)
4140ex 416 . . . . . . . . . . . . . . 15 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (𝑖𝑠𝑔𝑖)) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
4241expr 460 . . . . . . . . . . . . . 14 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (𝑔𝑖 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4325, 42syl5 34 . . . . . . . . . . . . 13 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → (( 𝑖𝑔 ) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4443expd 419 . . . . . . . . . . . 12 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ 𝑖𝑠) → ( 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4544rexlimdva 3246 . . . . . . . . . . 11 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (∃𝑖𝑠 𝑖 → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4623, 45syl5 34 . . . . . . . . . 10 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset ∧ ∈ (𝒫 𝑠 ∩ Fin)) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4746expdimp 456 . . . . . . . . 9 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( ∈ (𝒫 𝑠 ∩ Fin) → (𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))))
4847rexlimdv 3245 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃ ∈ (𝒫 𝑠 ∩ Fin)𝑔 → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
4919, 48syl5 34 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (𝑔 ∈ (𝒫 𝑠 ∩ Fin) → ( 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠)))
5049rexlimdv 3245 . . . . . 6 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → (∃𝑔 ∈ (𝒫 𝑠 ∩ Fin) 𝑠 = ((mrCls‘𝐶)‘𝑔) → 𝑠𝑠))
5116, 50mpd 15 . . . . 5 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑠)
5251ex 416 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
5352ralrimiva 3152 . . 3 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
542, 53jca 515 . 2 (𝐶 ∈ (NoeACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
55 simpl 486 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (Moore‘𝑋))
565adantl 485 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
5756sseld 3917 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ( 𝑠𝑠 𝑠𝐶))
5857imim2d 57 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
5958ralimdva 3147 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6059imp 410 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
61 isacs3 17780 . . . 4 (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
6255, 60, 61sylanbrc 586 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (ACS‘𝑋))
6310mrcid 16880 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6463adantlr 714 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = 𝑡)
6562adantr 484 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝐶 ∈ (ACS‘𝑋))
66 mress 16860 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝑡𝑋)
6766adantlr 714 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡𝑋)
6865, 10, 67acsficld 17781 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶)‘𝑡) = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
6964, 68eqtr3d 2838 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
7010mrcf 16876 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶):𝒫 𝑋𝐶)
7170ffnd 6492 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7271adantr 484 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (mrCls‘𝐶) Fn 𝒫 𝑋)
7310mrcss 16883 . . . . . . . . . . . . 13 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑔𝑋) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
74733expb 1117 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
7574adantlr 714 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) ∧ (𝑔𝑋)) → ((mrCls‘𝐶)‘𝑔) ⊆ ((mrCls‘𝐶)‘))
76 vex 3447 . . . . . . . . . . . 12 𝑡 ∈ V
77 fpwipodrs 17770 . . . . . . . . . . . 12 (𝑡 ∈ V → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
7876, 77mp1i 13 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘(𝒫 𝑡 ∩ Fin)) ∈ Dirset)
79 inss1 4158 . . . . . . . . . . . 12 (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑡
8066sspwd 4515 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → 𝒫 𝑡 ⊆ 𝒫 𝑋)
8179, 80sstrid 3929 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋)
82 fvex 6662 . . . . . . . . . . . . 13 (mrCls‘𝐶) ∈ V
83 imaexg 7606 . . . . . . . . . . . . 13 ((mrCls‘𝐶) ∈ V → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8482, 83ax-mp 5 . . . . . . . . . . . 12 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V
8584a1i 11 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ V)
8672, 75, 78, 81, 85ipodrsima 17771 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
8786adantlr 714 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset)
88 imassrn 5911 . . . . . . . . . . . . . 14 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ ran (mrCls‘𝐶)
8970frnd 6498 . . . . . . . . . . . . . 14 (𝐶 ∈ (Moore‘𝑋) → ran (mrCls‘𝐶) ⊆ 𝐶)
9088, 89sstrid 3929 . . . . . . . . . . . . 13 (𝐶 ∈ (Moore‘𝑋) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9190adantr 484 . . . . . . . . . . . 12 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9284elpw 4504 . . . . . . . . . . . 12 (((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ↔ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝐶)
9391, 92sylibr 237 . . . . . . . . . . 11 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
9493adantlr 714 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶)
95 simplr 768 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠))
96 fveq2 6649 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (toInc‘𝑠) = (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
9796eleq1d 2877 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset))
98 unieq 4814 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
99 id 22 . . . . . . . . . . . . 13 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → 𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
10098, 99eleq12d 2887 . . . . . . . . . . . 12 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → ( 𝑠𝑠 ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10197, 100imbi12d 348 . . . . . . . . . . 11 (𝑠 = ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝑠) ↔ ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))))
102101rspcva 3572 . . . . . . . . . 10 ((((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10394, 95, 102syl2anc 587 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((toInc‘((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))) ∈ Dirset → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin))))
10487, 103mpd 15 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
10569, 104eqeltrd 2893 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → 𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)))
106 fvelimab 6716 . . . . . . . . 9 (((mrCls‘𝐶) Fn 𝒫 𝑋 ∧ (𝒫 𝑡 ∩ Fin) ⊆ 𝒫 𝑋) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
10772, 81, 106syl2anc 587 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
108107adantlr 714 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (𝑡 ∈ ((mrCls‘𝐶) “ (𝒫 𝑡 ∩ Fin)) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡))
109105, 108mpbid 235 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
110 eqcom 2808 . . . . . . 7 (𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ((mrCls‘𝐶)‘𝑔) = 𝑡)
111110rexbii 3213 . . . . . 6 (∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)((mrCls‘𝐶)‘𝑔) = 𝑡)
112109, 111sylibr 237 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
11310mrefg2 39645 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
114113ad2antrr 725 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑡 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
115112, 114mpbird 260 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) ∧ 𝑡𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
116115ralrimiva 3152 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔))
11710isnacs 39642 . . 3 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑡𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑡 = ((mrCls‘𝐶)‘𝑔)))
11862, 116, 117sylanbrc 586 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)) → 𝐶 ∈ (NoeACS‘𝑋))
11954, 118impbii 212 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝑠)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884  𝒫 cpw 4500  ∪ cuni 4803  ran crn 5524   “ cima 5526   Fn wfn 6323  ‘cfv 6328  Fincfn 8496  Moorecmre 16849  mrClscmrc 16850  ACScacs 16852  Dirsetcdrs 17533  toInccipo 17757  NoeACScnacs 39640 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-tset 16580  df-ple 16581  df-ocomp 16582  df-mre 16853  df-mrc 16854  df-acs 16856  df-proset 17534  df-drs 17535  df-poset 17552  df-ipo 17758  df-nacs 39641 This theorem is referenced by:  nacsfix  39650
 Copyright terms: Public domain W3C validator