Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs Structured version   Visualization version   GIF version

Theorem isnacs 40442
Description: Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isnacs (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔,𝑠   𝑔,𝐹,𝑠   𝑔,𝑋,𝑠

Proof of Theorem isnacs
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6789 . 2 (𝐶 ∈ (NoeACS‘𝑋) → 𝑋 ∈ V)
2 elfvex 6789 . . 3 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) → 𝑋 ∈ V)
4 fveq2 6756 . . . . . 6 (𝑥 = 𝑋 → (ACS‘𝑥) = (ACS‘𝑋))
5 pweq 4546 . . . . . . . . 9 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
65ineq1d 4142 . . . . . . . 8 (𝑥 = 𝑋 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
76rexeqdv 3340 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)))
87ralbidv 3120 . . . . . 6 (𝑥 = 𝑋 → (∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)))
94, 8rabeqbidv 3410 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
10 df-nacs 40441 . . . . 5 NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
11 fvex 6769 . . . . . 6 (ACS‘𝑋) ∈ V
1211rabex 5251 . . . . 5 {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ∈ V
139, 10, 12fvmpt 6857 . . . 4 (𝑋 ∈ V → (NoeACS‘𝑋) = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
1413eleq2d 2824 . . 3 (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}))
15 fveq2 6756 . . . . . . . . 9 (𝑐 = 𝐶 → (mrCls‘𝑐) = (mrCls‘𝐶))
16 isnacs.f . . . . . . . . 9 𝐹 = (mrCls‘𝐶)
1715, 16eqtr4di 2797 . . . . . . . 8 (𝑐 = 𝐶 → (mrCls‘𝑐) = 𝐹)
1817fveq1d 6758 . . . . . . 7 (𝑐 = 𝐶 → ((mrCls‘𝑐)‘𝑔) = (𝐹𝑔))
1918eqeq2d 2749 . . . . . 6 (𝑐 = 𝐶 → (𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ 𝑠 = (𝐹𝑔)))
2019rexbidv 3225 . . . . 5 (𝑐 = 𝐶 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2120raleqbi1dv 3331 . . . 4 (𝑐 = 𝐶 → (∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2221elrab 3617 . . 3 (𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2314, 22bitrdi 286 . 2 (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔))))
241, 3, 23pm5.21nii 379 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  𝒫 cpw 4530  cfv 6418  Fincfn 8691  mrClscmrc 17209  ACScacs 17211  NoeACScnacs 40440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-nacs 40441
This theorem is referenced by:  nacsfg  40443  isnacs2  40444  isnacs3  40448  islnr3  40856
  Copyright terms: Public domain W3C validator