Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs Structured version   Visualization version   GIF version

Theorem isnacs 41085
Description: Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isnacs (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔,𝑠   𝑔,𝐹,𝑠   𝑔,𝑋,𝑠

Proof of Theorem isnacs
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6885 . 2 (𝐶 ∈ (NoeACS‘𝑋) → 𝑋 ∈ V)
2 elfvex 6885 . . 3 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ V)
32adantr 481 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) → 𝑋 ∈ V)
4 fveq2 6847 . . . . . 6 (𝑥 = 𝑋 → (ACS‘𝑥) = (ACS‘𝑋))
5 pweq 4579 . . . . . . . . 9 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
65ineq1d 4176 . . . . . . . 8 (𝑥 = 𝑋 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
76rexeqdv 3312 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)))
87ralbidv 3170 . . . . . 6 (𝑥 = 𝑋 → (∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)))
94, 8rabeqbidv 3422 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
10 df-nacs 41084 . . . . 5 NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
11 fvex 6860 . . . . . 6 (ACS‘𝑋) ∈ V
1211rabex 5294 . . . . 5 {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ∈ V
139, 10, 12fvmpt 6953 . . . 4 (𝑋 ∈ V → (NoeACS‘𝑋) = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
1413eleq2d 2818 . . 3 (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}))
15 fveq2 6847 . . . . . . . . 9 (𝑐 = 𝐶 → (mrCls‘𝑐) = (mrCls‘𝐶))
16 isnacs.f . . . . . . . . 9 𝐹 = (mrCls‘𝐶)
1715, 16eqtr4di 2789 . . . . . . . 8 (𝑐 = 𝐶 → (mrCls‘𝑐) = 𝐹)
1817fveq1d 6849 . . . . . . 7 (𝑐 = 𝐶 → ((mrCls‘𝑐)‘𝑔) = (𝐹𝑔))
1918eqeq2d 2742 . . . . . 6 (𝑐 = 𝐶 → (𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ 𝑠 = (𝐹𝑔)))
2019rexbidv 3171 . . . . 5 (𝑐 = 𝐶 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2120raleqbi1dv 3305 . . . 4 (𝑐 = 𝐶 → (∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2221elrab 3648 . . 3 (𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2314, 22bitrdi 286 . 2 (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔))))
241, 3, 23pm5.21nii 379 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  {crab 3405  Vcvv 3446  cin 3912  𝒫 cpw 4565  cfv 6501  Fincfn 8890  mrClscmrc 17477  ACScacs 17479  NoeACScnacs 41083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fv 6509  df-nacs 41084
This theorem is referenced by:  nacsfg  41086  isnacs2  41087  isnacs3  41091  islnr3  41500
  Copyright terms: Public domain W3C validator