Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnacs Structured version   Visualization version   GIF version

Theorem isnacs 42736
Description: Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
isnacs.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isnacs (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
Distinct variable groups:   𝐶,𝑔,𝑠   𝑔,𝐹,𝑠   𝑔,𝑋,𝑠

Proof of Theorem isnacs
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6857 . 2 (𝐶 ∈ (NoeACS‘𝑋) → 𝑋 ∈ V)
2 elfvex 6857 . . 3 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ V)
32adantr 480 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)) → 𝑋 ∈ V)
4 fveq2 6822 . . . . . 6 (𝑥 = 𝑋 → (ACS‘𝑥) = (ACS‘𝑋))
5 pweq 4564 . . . . . . . . 9 (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋)
65ineq1d 4169 . . . . . . . 8 (𝑥 = 𝑋 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin))
76rexeqdv 3293 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)))
87ralbidv 3155 . . . . . 6 (𝑥 = 𝑋 → (∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)))
94, 8rabeqbidv 3413 . . . . 5 (𝑥 = 𝑋 → {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
10 df-nacs 42735 . . . . 5 NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
11 fvex 6835 . . . . . 6 (ACS‘𝑋) ∈ V
1211rabex 5277 . . . . 5 {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ∈ V
139, 10, 12fvmpt 6929 . . . 4 (𝑋 ∈ V → (NoeACS‘𝑋) = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
1413eleq2d 2817 . . 3 (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}))
15 fveq2 6822 . . . . . . . . 9 (𝑐 = 𝐶 → (mrCls‘𝑐) = (mrCls‘𝐶))
16 isnacs.f . . . . . . . . 9 𝐹 = (mrCls‘𝐶)
1715, 16eqtr4di 2784 . . . . . . . 8 (𝑐 = 𝐶 → (mrCls‘𝑐) = 𝐹)
1817fveq1d 6824 . . . . . . 7 (𝑐 = 𝐶 → ((mrCls‘𝑐)‘𝑔) = (𝐹𝑔))
1918eqeq2d 2742 . . . . . 6 (𝑐 = 𝐶 → (𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ 𝑠 = (𝐹𝑔)))
2019rexbidv 3156 . . . . 5 (𝑐 = 𝐶 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2120raleqbi1dv 3304 . . . 4 (𝑐 = 𝐶 → (∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2221elrab 3647 . . 3 (𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
2314, 22bitrdi 287 . 2 (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔))))
241, 3, 23pm5.21nii 378 1 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠𝐶𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cin 3901  𝒫 cpw 4550  cfv 6481  Fincfn 8869  mrClscmrc 17482  ACScacs 17484  NoeACScnacs 42734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-nacs 42735
This theorem is referenced by:  nacsfg  42737  isnacs2  42738  isnacs3  42742  islnr3  43147
  Copyright terms: Public domain W3C validator