Step | Hyp | Ref
| Expression |
1 | | elfvex 6839 |
. 2
⊢ (𝐶 ∈ (NoeACS‘𝑋) → 𝑋 ∈ V) |
2 | | elfvex 6839 |
. . 3
⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ V) |
3 | 2 | adantr 482 |
. 2
⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)) → 𝑋 ∈ V) |
4 | | fveq2 6804 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (ACS‘𝑥) = (ACS‘𝑋)) |
5 | | pweq 4553 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋) |
6 | 5 | ineq1d 4151 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝑋 ∩ Fin)) |
7 | 6 | rexeqdv 3361 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔))) |
8 | 7 | ralbidv 3171 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔))) |
9 | 4, 8 | rabeqbidv 3427 |
. . . . 5
⊢ (𝑥 = 𝑋 → {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) |
10 | | df-nacs 40562 |
. . . . 5
⊢ NoeACS =
(𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) |
11 | | fvex 6817 |
. . . . . 6
⊢
(ACS‘𝑋) ∈
V |
12 | 11 | rabex 5265 |
. . . . 5
⊢ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ∈ V |
13 | 9, 10, 12 | fvmpt 6907 |
. . . 4
⊢ (𝑋 ∈ V →
(NoeACS‘𝑋) = {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) |
14 | 13 | eleq2d 2822 |
. . 3
⊢ (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ 𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})) |
15 | | fveq2 6804 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (mrCls‘𝑐) = (mrCls‘𝐶)) |
16 | | isnacs.f |
. . . . . . . . 9
⊢ 𝐹 = (mrCls‘𝐶) |
17 | 15, 16 | eqtr4di 2794 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (mrCls‘𝑐) = 𝐹) |
18 | 17 | fveq1d 6806 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → ((mrCls‘𝑐)‘𝑔) = (𝐹‘𝑔)) |
19 | 18 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ 𝑠 = (𝐹‘𝑔))) |
20 | 19 | rexbidv 3172 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) |
21 | 20 | raleqbi1dv 3352 |
. . . 4
⊢ (𝑐 = 𝐶 → (∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔) ↔ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) |
22 | 21 | elrab 3629 |
. . 3
⊢ (𝐶 ∈ {𝑐 ∈ (ACS‘𝑋) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)} ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) |
23 | 14, 22 | bitrdi 287 |
. 2
⊢ (𝑋 ∈ V → (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔)))) |
24 | 1, 3, 23 | pm5.21nii 380 |
1
⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) |