![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovg | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain, analogous to ndmovg 7586. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ndmaovg | ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ((𝐴𝐹𝐵)) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5705 | . . . . 5 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
2 | eleq2 2816 | . . . . . 6 ⊢ ((𝑅 × 𝑆) = dom 𝐹 → (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)) | |
3 | 2 | eqcoms 2734 | . . . . 5 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)) |
4 | 1, 3 | bitr3id 285 | . . . 4 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)) |
5 | 4 | notbid 318 | . . 3 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)) |
6 | 5 | biimpa 476 | . 2 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) |
7 | ndmaov 46444 | . 2 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
8 | 6, 7 | syl 17 | 1 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ((𝐴𝐹𝐵)) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 × cxp 5667 dom cdm 5669 ((caov 46379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-iota 6488 df-fun 6538 df-fv 6544 df-aiota 46346 df-dfat 46380 df-afv 46381 df-aov 46382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |