Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovg | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain, analogous to ndmovg 7433. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ndmaovg | ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ((𝐴𝐹𝐵)) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5616 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
2 | eleq2 2827 | . . . . . 6 ⊢ ((𝑅 × 𝑆) = dom 𝐹 → (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) | |
3 | 2 | eqcoms 2746 | . . . . 5 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) |
4 | 1, 3 | bitr3id 284 | . . . 4 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) |
5 | 4 | notbid 317 | . . 3 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ↔ ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) |
6 | 5 | biimpa 476 | . 2 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
7 | ndmaov 44562 | . 2 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
8 | 6, 7 | syl 17 | 1 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ((𝐴𝐹𝐵)) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 × cxp 5578 dom cdm 5580 ((caov 44497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-aiota 44464 df-dfat 44498 df-afv 44499 df-aov 44500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |