Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovg Structured version   Visualization version   GIF version

Theorem ndmaovg 42735
Description: The value of an operation outside its domain, analogous to ndmovg 7141. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ndmaovg ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ((𝐴𝐹𝐵)) = V)

Proof of Theorem ndmaovg
StepHypRef Expression
1 opelxp 5436 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
2 eleq2 2848 . . . . . 6 ((𝑅 × 𝑆) = dom 𝐹 → (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
32eqcoms 2780 . . . . 5 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
41, 3syl5bbr 277 . . . 4 (dom 𝐹 = (𝑅 × 𝑆) → ((𝐴𝑅𝐵𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
54notbid 310 . . 3 (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴𝑅𝐵𝑆) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
65biimpa 469 . 2 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
7 ndmaov 42734 . 2 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
86, 7syl 17 1 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  Vcvv 3409  cop 4441   × cxp 5398  dom cdm 5400   ((caov 42669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-int 4744  df-br 4924  df-opab 4986  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-res 5412  df-iota 6146  df-fun 6184  df-fv 6190  df-aiota 42637  df-dfat 42670  df-afv 42671  df-aov 42672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator