| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovg | Structured version Visualization version GIF version | ||
| Description: The value of an operation outside its domain, analogous to ndmovg 7536. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| ndmaovg | ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ((𝐴𝐹𝐵)) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5659 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
| 2 | eleq2 2817 | . . . . . 6 ⊢ ((𝑅 × 𝑆) = dom 𝐹 → (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) | |
| 3 | 2 | eqcoms 2737 | . . . . 5 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) |
| 4 | 1, 3 | bitr3id 285 | . . . 4 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) |
| 5 | 4 | notbid 318 | . . 3 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ↔ ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹)) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 7 | ndmaov 47187 | . 2 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ((𝐴𝐹𝐵)) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 × cxp 5621 dom cdm 5623 ((caov 47122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-aiota 47089 df-dfat 47123 df-afv 47124 df-aov 47125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |