Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovg Structured version   Visualization version   GIF version

Theorem ndmaovg 47158
Description: The value of an operation outside its domain, analogous to ndmovg 7552. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ndmaovg ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ((𝐴𝐹𝐵)) = V)

Proof of Theorem ndmaovg
StepHypRef Expression
1 opelxp 5667 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
2 eleq2 2817 . . . . . 6 ((𝑅 × 𝑆) = dom 𝐹 → (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
32eqcoms 2737 . . . . 5 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
41, 3bitr3id 285 . . . 4 (dom 𝐹 = (𝑅 × 𝑆) → ((𝐴𝑅𝐵𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
54notbid 318 . . 3 (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴𝑅𝐵𝑆) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹))
65biimpa 476 . 2 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
7 ndmaov 47157 . 2 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
86, 7syl 17 1 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591   × cxp 5629  dom cdm 5631   ((caov 47092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-aiota 47059  df-dfat 47093  df-afv 47094  df-aov 47095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator