Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaov Structured version   Visualization version   GIF version

Theorem ndmaov 46376
Description: The value of an operation outside its domain, analogous to ndmafv 46333. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ndmaov (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)

Proof of Theorem ndmaov
StepHypRef Expression
1 df-aov 46314 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
2 ndmafv 46333 . 2 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹'''⟨𝐴, 𝐵⟩) = V)
31, 2eqtrid 2776 1 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  cop 4626  dom cdm 5666  '''cafv 46310   ((caov 46311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-res 5678  df-iota 6485  df-fun 6535  df-fv 6541  df-aiota 46278  df-dfat 46312  df-afv 46313  df-aov 46314
This theorem is referenced by:  ndmaovg  46377  ndmaovcl  46396  ndmaovcom  46398  ndmaovass  46399  ndmaovdistr  46400
  Copyright terms: Public domain W3C validator