MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmptss Structured version   Visualization version   GIF version

Theorem ovmptss 7861
Description: If all the values of the mapping are subsets of a class 𝑋, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
ovmptss.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
ovmptss (∀𝑥𝐴𝑦𝐵 𝐶𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem ovmptss
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovmptss.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 mpomptsx 7834 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
31, 2eqtri 2765 . . 3 𝐹 = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
43fvmptss 6830 . 2 (∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 → (𝐹‘⟨𝐸, 𝐺⟩) ⊆ 𝑋)
5 vex 3412 . . . . . . . 8 𝑢 ∈ V
6 vex 3412 . . . . . . . 8 𝑣 ∈ V
75, 6op1std 7771 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) = 𝑢)
87csbeq1d 3815 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶)
95, 6op2ndd 7772 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) = 𝑣)
109csbeq1d 3815 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
1110csbeq2dv 3818 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
128, 11eqtrd 2777 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1312sseq1d 3932 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
1413raliunxp 5708 . . 3 (∀𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 ↔ ∀𝑢𝐴𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋)
15 nfcv 2904 . . . . 5 𝑢({𝑥} × 𝐵)
16 nfcv 2904 . . . . . 6 𝑥{𝑢}
17 nfcsb1v 3836 . . . . . 6 𝑥𝑢 / 𝑥𝐵
1816, 17nfxp 5584 . . . . 5 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
19 sneq 4551 . . . . . 6 (𝑥 = 𝑢 → {𝑥} = {𝑢})
20 csbeq1a 3825 . . . . . 6 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
2119, 20xpeq12d 5582 . . . . 5 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
2215, 18, 21cbviun 4945 . . . 4 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
2322raleqi 3323 . . 3 (∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 ↔ ∀𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋)
24 nfv 1922 . . . 4 𝑢𝑦𝐵 𝐶𝑋
25 nfcsb1v 3836 . . . . . 6 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
26 nfcv 2904 . . . . . 6 𝑥𝑋
2725, 26nfss 3892 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋
2817, 27nfralw 3147 . . . 4 𝑥𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋
29 nfv 1922 . . . . . 6 𝑣 𝐶𝑋
30 nfcsb1v 3836 . . . . . . 7 𝑦𝑣 / 𝑦𝐶
31 nfcv 2904 . . . . . . 7 𝑦𝑋
3230, 31nfss 3892 . . . . . 6 𝑦𝑣 / 𝑦𝐶𝑋
33 csbeq1a 3825 . . . . . . 7 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
3433sseq1d 3932 . . . . . 6 (𝑦 = 𝑣 → (𝐶𝑋𝑣 / 𝑦𝐶𝑋))
3529, 32, 34cbvralw 3349 . . . . 5 (∀𝑦𝐵 𝐶𝑋 ↔ ∀𝑣𝐵 𝑣 / 𝑦𝐶𝑋)
36 csbeq1a 3825 . . . . . . 7 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
3736sseq1d 3932 . . . . . 6 (𝑥 = 𝑢 → (𝑣 / 𝑦𝐶𝑋𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
3820, 37raleqbidv 3313 . . . . 5 (𝑥 = 𝑢 → (∀𝑣𝐵 𝑣 / 𝑦𝐶𝑋 ↔ ∀𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
3935, 38syl5bb 286 . . . 4 (𝑥 = 𝑢 → (∀𝑦𝐵 𝐶𝑋 ↔ ∀𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
4024, 28, 39cbvralw 3349 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 ↔ ∀𝑢𝐴𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋)
4114, 23, 403bitr4ri 307 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 ↔ ∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋)
42 df-ov 7216 . . 3 (𝐸𝐹𝐺) = (𝐹‘⟨𝐸, 𝐺⟩)
4342sseq1i 3929 . 2 ((𝐸𝐹𝐺) ⊆ 𝑋 ↔ (𝐹‘⟨𝐸, 𝐺⟩) ⊆ 𝑋)
444, 41, 433imtr4i 295 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wral 3061  csb 3811  wss 3866  {csn 4541  cop 4547   ciun 4904  cmpt 5135   × cxp 5549  cfv 6380  (class class class)co 7213  cmpo 7215  1st c1st 7759  2nd c2nd 7760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762
This theorem is referenced by:  relmpoopab  7862  relxpchom  17688  reldv  24767
  Copyright terms: Public domain W3C validator