MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmptss Structured version   Visualization version   GIF version

Theorem ovmptss 8025
Description: If all the values of the mapping are subsets of a class 𝑋, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
ovmptss.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
ovmptss (∀𝑥𝐴𝑦𝐵 𝐶𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem ovmptss
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovmptss.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 mpomptsx 7996 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
31, 2eqtri 2764 . . 3 𝐹 = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
43fvmptss 6960 . 2 (∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 → (𝐹‘⟨𝐸, 𝐺⟩) ⊆ 𝑋)
5 vex 3449 . . . . . . . 8 𝑢 ∈ V
6 vex 3449 . . . . . . . 8 𝑣 ∈ V
75, 6op1std 7931 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) = 𝑢)
87csbeq1d 3859 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶)
95, 6op2ndd 7932 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) = 𝑣)
109csbeq1d 3859 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
1110csbeq2dv 3862 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
128, 11eqtrd 2776 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1312sseq1d 3975 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
1413raliunxp 5795 . . 3 (∀𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 ↔ ∀𝑢𝐴𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋)
15 nfcv 2907 . . . . 5 𝑢({𝑥} × 𝐵)
16 nfcv 2907 . . . . . 6 𝑥{𝑢}
17 nfcsb1v 3880 . . . . . 6 𝑥𝑢 / 𝑥𝐵
1816, 17nfxp 5666 . . . . 5 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
19 sneq 4596 . . . . . 6 (𝑥 = 𝑢 → {𝑥} = {𝑢})
20 csbeq1a 3869 . . . . . 6 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
2119, 20xpeq12d 5664 . . . . 5 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
2215, 18, 21cbviun 4996 . . . 4 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
2322raleqi 3311 . . 3 (∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 ↔ ∀𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋)
24 nfv 1917 . . . 4 𝑢𝑦𝐵 𝐶𝑋
25 nfcsb1v 3880 . . . . . 6 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
26 nfcv 2907 . . . . . 6 𝑥𝑋
2725, 26nfss 3936 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋
2817, 27nfralw 3294 . . . 4 𝑥𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋
29 nfv 1917 . . . . . 6 𝑣 𝐶𝑋
30 nfcsb1v 3880 . . . . . . 7 𝑦𝑣 / 𝑦𝐶
31 nfcv 2907 . . . . . . 7 𝑦𝑋
3230, 31nfss 3936 . . . . . 6 𝑦𝑣 / 𝑦𝐶𝑋
33 csbeq1a 3869 . . . . . . 7 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
3433sseq1d 3975 . . . . . 6 (𝑦 = 𝑣 → (𝐶𝑋𝑣 / 𝑦𝐶𝑋))
3529, 32, 34cbvralw 3289 . . . . 5 (∀𝑦𝐵 𝐶𝑋 ↔ ∀𝑣𝐵 𝑣 / 𝑦𝐶𝑋)
36 csbeq1a 3869 . . . . . . 7 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
3736sseq1d 3975 . . . . . 6 (𝑥 = 𝑢 → (𝑣 / 𝑦𝐶𝑋𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
3820, 37raleqbidv 3319 . . . . 5 (𝑥 = 𝑢 → (∀𝑣𝐵 𝑣 / 𝑦𝐶𝑋 ↔ ∀𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
3935, 38bitrid 282 . . . 4 (𝑥 = 𝑢 → (∀𝑦𝐵 𝐶𝑋 ↔ ∀𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
4024, 28, 39cbvralw 3289 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 ↔ ∀𝑢𝐴𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋)
4114, 23, 403bitr4ri 303 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 ↔ ∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋)
42 df-ov 7360 . . 3 (𝐸𝐹𝐺) = (𝐹‘⟨𝐸, 𝐺⟩)
4342sseq1i 3972 . 2 ((𝐸𝐹𝐺) ⊆ 𝑋 ↔ (𝐹‘⟨𝐸, 𝐺⟩) ⊆ 𝑋)
444, 41, 433imtr4i 291 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wral 3064  csb 3855  wss 3910  {csn 4586  cop 4592   ciun 4954  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922
This theorem is referenced by:  relmpoopab  8026  relxpchom  18069  reldv  25234
  Copyright terms: Public domain W3C validator