MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2 Structured version   Visualization version   GIF version

Theorem axcc2 10337
Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.)
Assertion
Ref Expression
axcc2 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable group:   𝑔,𝐹,𝑛

Proof of Theorem axcc2
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2895 . . 3 𝑛if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))
2 nfcv 2895 . . 3 𝑚if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛))
3 fveqeq2 6839 . . . 4 (𝑚 = 𝑛 → ((𝐹𝑚) = ∅ ↔ (𝐹𝑛) = ∅))
4 fveq2 6830 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
53, 4ifbieq2d 4503 . . 3 (𝑚 = 𝑛 → if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
61, 2, 5cbvmpt 5197 . 2 (𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))) = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
7 nfcv 2895 . . 3 𝑛({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))
8 nfcv 2895 . . . 4 𝑚{𝑛}
9 nffvmpt1 6841 . . . 4 𝑚((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)
108, 9nfxp 5654 . . 3 𝑚({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
11 sneq 4587 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
12 fveq2 6830 . . . 4 (𝑚 = 𝑛 → ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚) = ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
1311, 12xpeq12d 5652 . . 3 (𝑚 = 𝑛 → ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)) = ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
147, 10, 13cbvmpt 5197 . 2 (𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
15 nfcv 2895 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))
16 nfcv 2895 . . . 4 𝑚2nd
17 nfcv 2895 . . . . 5 𝑚𝑓
18 nffvmpt1 6841 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)
1917, 18nffv 6840 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))
2016, 19nffv 6840 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
21 2fveq3 6835 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
2221fveq2d 6834 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
2315, 20, 22cbvmpt 5197 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
246, 14, 23axcc2lem 10336 1 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  c0 4282  ifcif 4476  {csn 4577  cmpt 5176   × cxp 5619   Fn wfn 6483  cfv 6488  ωcom 7804  2nd c2nd 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cc 10335
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-om 7805  df-2nd 7930  df-er 8630  df-en 8878
This theorem is referenced by:  axcc3  10338  acncc  10340  domtriomlem  10342
  Copyright terms: Public domain W3C validator