MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2 Structured version   Visualization version   GIF version

Theorem axcc2 10428
Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.)
Assertion
Ref Expression
axcc2 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable group:   𝑔,𝐹,𝑛

Proof of Theorem axcc2
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2903 . . 3 𝑛if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))
2 nfcv 2903 . . 3 𝑚if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛))
3 fveqeq2 6897 . . . 4 (𝑚 = 𝑛 → ((𝐹𝑚) = ∅ ↔ (𝐹𝑛) = ∅))
4 fveq2 6888 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
53, 4ifbieq2d 4553 . . 3 (𝑚 = 𝑛 → if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
61, 2, 5cbvmpt 5258 . 2 (𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))) = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
7 nfcv 2903 . . 3 𝑛({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))
8 nfcv 2903 . . . 4 𝑚{𝑛}
9 nffvmpt1 6899 . . . 4 𝑚((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)
108, 9nfxp 5708 . . 3 𝑚({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
11 sneq 4637 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
12 fveq2 6888 . . . 4 (𝑚 = 𝑛 → ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚) = ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
1311, 12xpeq12d 5706 . . 3 (𝑚 = 𝑛 → ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)) = ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
147, 10, 13cbvmpt 5258 . 2 (𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
15 nfcv 2903 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))
16 nfcv 2903 . . . 4 𝑚2nd
17 nfcv 2903 . . . . 5 𝑚𝑓
18 nffvmpt1 6899 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)
1917, 18nffv 6898 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))
2016, 19nffv 6898 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
21 2fveq3 6893 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
2221fveq2d 6892 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
2315, 20, 22cbvmpt 5258 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
246, 14, 23axcc2lem 10427 1 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  c0 4321  ifcif 4527  {csn 4627  cmpt 5230   × cxp 5673   Fn wfn 6535  cfv 6540  ωcom 7851  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-2nd 7972  df-er 8699  df-en 8936
This theorem is referenced by:  axcc3  10429  acncc  10431  domtriomlem  10433
  Copyright terms: Public domain W3C validator