MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2 Structured version   Visualization version   GIF version

Theorem axcc2 10451
Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.)
Assertion
Ref Expression
axcc2 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable group:   𝑔,𝐹,𝑛

Proof of Theorem axcc2
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2898 . . 3 𝑛if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))
2 nfcv 2898 . . 3 𝑚if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛))
3 fveqeq2 6885 . . . 4 (𝑚 = 𝑛 → ((𝐹𝑚) = ∅ ↔ (𝐹𝑛) = ∅))
4 fveq2 6876 . . . 4 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
53, 4ifbieq2d 4527 . . 3 (𝑚 = 𝑛 → if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
61, 2, 5cbvmpt 5223 . 2 (𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚))) = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
7 nfcv 2898 . . 3 𝑛({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))
8 nfcv 2898 . . . 4 𝑚{𝑛}
9 nffvmpt1 6887 . . . 4 𝑚((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)
108, 9nfxp 5687 . . 3 𝑚({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
11 sneq 4611 . . . 4 (𝑚 = 𝑛 → {𝑚} = {𝑛})
12 fveq2 6876 . . . 4 (𝑚 = 𝑛 → ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚) = ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛))
1311, 12xpeq12d 5685 . . 3 (𝑚 = 𝑛 → ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)) = ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
147, 10, 13cbvmpt 5223 . 2 (𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚))) = (𝑛 ∈ ω ↦ ({𝑛} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑛)))
15 nfcv 2898 . . 3 𝑛(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))
16 nfcv 2898 . . . 4 𝑚2nd
17 nfcv 2898 . . . . 5 𝑚𝑓
18 nffvmpt1 6887 . . . . 5 𝑚((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)
1917, 18nffv 6886 . . . 4 𝑚(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))
2016, 19nffv 6886 . . 3 𝑚(2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
21 2fveq3 6881 . . . 4 (𝑚 = 𝑛 → (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)) = (𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛)))
2221fveq2d 6880 . . 3 (𝑚 = 𝑛 → (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚))) = (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
2315, 20, 22cbvmpt 5223 . 2 (𝑚 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑚)))) = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘((𝑚 ∈ ω ↦ ({𝑚} × ((𝑚 ∈ ω ↦ if((𝐹𝑚) = ∅, {∅}, (𝐹𝑚)))‘𝑚)))‘𝑛))))
246, 14, 23axcc2lem 10450 1 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  c0 4308  ifcif 4500  {csn 4601  cmpt 5201   × cxp 5652   Fn wfn 6526  cfv 6531  ωcom 7861  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-2nd 7989  df-er 8719  df-en 8960
This theorem is referenced by:  axcc3  10452  acncc  10454  domtriomlem  10456
  Copyright terms: Public domain W3C validator