MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsf Structured version   Visualization version   GIF version

Theorem prdsdsf 23720
Description: The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsdsf (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsdsf
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → 𝑦𝐼)
2 prdsdsf.r . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑅𝑍)
32elexd 3465 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → 𝑅 ∈ V)
43ralrimiva 3143 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐼 𝑅 ∈ V)
54adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅 ∈ V)
6 nfcsb1v 3880 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑅
76nfel1 2923 . . . . . . . . . . . . . . . 16 𝑥𝑦 / 𝑥𝑅 ∈ V
8 csbeq1a 3869 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
98eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑅 ∈ V ↔ 𝑦 / 𝑥𝑅 ∈ V))
107, 9rspc 3569 . . . . . . . . . . . . . . 15 (𝑦𝐼 → (∀𝑥𝐼 𝑅 ∈ V → 𝑦 / 𝑥𝑅 ∈ V))
115, 10mpan9 507 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → 𝑦 / 𝑥𝑅 ∈ V)
12 eqid 2736 . . . . . . . . . . . . . . 15 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
1312fvmpts 6951 . . . . . . . . . . . . . 14 ((𝑦𝐼𝑦 / 𝑥𝑅 ∈ V) → ((𝑥𝐼𝑅)‘𝑦) = 𝑦 / 𝑥𝑅)
141, 11, 13syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑥𝐼𝑅)‘𝑦) = 𝑦 / 𝑥𝑅)
1514fveq2d 6846 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘𝑦 / 𝑥𝑅))
1615oveqd 7374 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) = ((𝑓𝑦)(dist‘𝑦 / 𝑥𝑅)(𝑔𝑦)))
17 prdsdsf.y . . . . . . . . . . . . . 14 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
18 prdsdsf.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑌)
19 prdsdsf.s . . . . . . . . . . . . . . 15 (𝜑𝑆𝑊)
2019adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
21 prdsdsf.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑋)
2221adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑋)
23 prdsdsf.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑅)
24 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
2517, 18, 20, 22, 5, 23, 24prdsbascl 17365 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
26 nfcsb1v 3880 . . . . . . . . . . . . . . 15 𝑥𝑦 / 𝑥𝑉
2726nfel2 2925 . . . . . . . . . . . . . 14 𝑥(𝑓𝑦) ∈ 𝑦 / 𝑥𝑉
28 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
29 csbeq1a 3869 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦𝑉 = 𝑦 / 𝑥𝑉)
3028, 29eleq12d 2832 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑉 ↔ (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉))
3127, 30rspc 3569 . . . . . . . . . . . . 13 (𝑦𝐼 → (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 → (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉))
3225, 31mpan9 507 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉)
33 simprr 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
3417, 18, 20, 22, 5, 23, 33prdsbascl 17365 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
3526nfel2 2925 . . . . . . . . . . . . . 14 𝑥(𝑔𝑦) ∈ 𝑦 / 𝑥𝑉
36 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
3736, 29eleq12d 2832 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑔𝑥) ∈ 𝑉 ↔ (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉))
3835, 37rspc 3569 . . . . . . . . . . . . 13 (𝑦𝐼 → (∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉 → (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉))
3934, 38mpan9 507 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉)
4032, 39ovresd 7521 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) = ((𝑓𝑦)(dist‘𝑦 / 𝑥𝑅)(𝑔𝑦)))
4116, 40eqtr4d 2779 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) = ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)))
42 prdsdsf.m . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
4342ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
4443adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
45 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑥dist
4645, 6nffv 6852 . . . . . . . . . . . . . . 15 𝑥(dist‘𝑦 / 𝑥𝑅)
4726, 26nfxp 5666 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)
4846, 47nfres 5939 . . . . . . . . . . . . . 14 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))
49 nfcv 2907 . . . . . . . . . . . . . . 15 𝑥∞Met
5049, 26nffv 6852 . . . . . . . . . . . . . 14 𝑥(∞Met‘𝑦 / 𝑥𝑉)
5148, 50nfel 2921 . . . . . . . . . . . . 13 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)
52 prdsdsf.e . . . . . . . . . . . . . . 15 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
538fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘𝑦 / 𝑥𝑅))
5429sqxpeqd 5665 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑉 × 𝑉) = (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))
5553, 54reseq12d 5938 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)))
5652, 55eqtrid 2788 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐸 = ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)))
5729fveq2d 6846 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘𝑦 / 𝑥𝑉))
5856, 57eleq12d 2832 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)))
5951, 58rspc 3569 . . . . . . . . . . . 12 (𝑦𝐼 → (∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)))
6044, 59mpan9 507 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉))
61 xmetcl 23684 . . . . . . . . . . 11 ((((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉) ∧ (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉 ∧ (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) ∈ ℝ*)
6260, 32, 39, 61syl3anc 1371 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) ∈ ℝ*)
6341, 62eqeltrd 2838 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) ∈ ℝ*)
6463fmpttd 7063 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))):𝐼⟶ℝ*)
6564frnd 6676 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ⊆ ℝ*)
66 0xr 11202 . . . . . . . . 9 0 ∈ ℝ*
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ*)
6867snssd 4769 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ*)
6965, 68unssd 4146 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ*)
70 supxrcl 13234 . . . . . 6 ((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ* → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ*)
7169, 70syl 17 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ*)
72 ssun2 4133 . . . . . . 7 {0} ⊆ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})
73 c0ex 11149 . . . . . . . 8 0 ∈ V
7473snss 4746 . . . . . . 7 (0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ↔ {0} ⊆ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}))
7572, 74mpbir 230 . . . . . 6 0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})
76 supxrub 13243 . . . . . 6 (((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ* ∧ 0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})) → 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
7769, 75, 76sylancl 586 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
78 elxrge0 13374 . . . . 5 (sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞) ↔ (sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )))
7971, 77, 78sylanbrc 583 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞))
8079ralrimivva 3197 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞))
81 eqid 2736 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
8281fmpo 8000 . . 3 (∀𝑓𝐵𝑔𝐵 sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞) ↔ (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞))
8380, 82sylib 217 . 2 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞))
8421mptexd 7174 . . . 4 (𝜑 → (𝑥𝐼𝑅) ∈ V)
852ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
86 dmmptg 6194 . . . . 5 (∀𝑥𝐼 𝑅𝑍 → dom (𝑥𝐼𝑅) = 𝐼)
8785, 86syl 17 . . . 4 (𝜑 → dom (𝑥𝐼𝑅) = 𝐼)
88 prdsdsf.d . . . 4 𝐷 = (dist‘𝑌)
8917, 19, 84, 18, 87, 88prdsds 17346 . . 3 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )))
9089feq1d 6653 . 2 (𝜑 → (𝐷:(𝐵 × 𝐵)⟶(0[,]+∞) ↔ (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞)))
9183, 90mpbird 256 1 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  csb 3855  cun 3908  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  supcsup 9376  0cc0 11051  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  [,]cicc 13267  Basecbs 17083  distcds 17142  Xscprds 17327  ∞Metcxmet 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-icc 13271  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-prds 17329  df-xmet 20789
This theorem is referenced by:  prdsxmetlem  23721  prdsmet  23723
  Copyright terms: Public domain W3C validator