MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsf Structured version   Visualization version   GIF version

Theorem prdsdsf 24302
Description: The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsdsf (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsdsf
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → 𝑦𝐼)
2 prdsdsf.r . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑅𝑍)
32elexd 3461 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → 𝑅 ∈ V)
43ralrimiva 3125 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐼 𝑅 ∈ V)
54adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅 ∈ V)
6 nfcsb1v 3870 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑅
76nfel1 2912 . . . . . . . . . . . . . . . 16 𝑥𝑦 / 𝑥𝑅 ∈ V
8 csbeq1a 3860 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
98eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑅 ∈ V ↔ 𝑦 / 𝑥𝑅 ∈ V))
107, 9rspc 3561 . . . . . . . . . . . . . . 15 (𝑦𝐼 → (∀𝑥𝐼 𝑅 ∈ V → 𝑦 / 𝑥𝑅 ∈ V))
115, 10mpan9 506 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → 𝑦 / 𝑥𝑅 ∈ V)
12 eqid 2733 . . . . . . . . . . . . . . 15 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
1312fvmpts 6941 . . . . . . . . . . . . . 14 ((𝑦𝐼𝑦 / 𝑥𝑅 ∈ V) → ((𝑥𝐼𝑅)‘𝑦) = 𝑦 / 𝑥𝑅)
141, 11, 13syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑥𝐼𝑅)‘𝑦) = 𝑦 / 𝑥𝑅)
1514fveq2d 6835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘𝑦 / 𝑥𝑅))
1615oveqd 7372 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) = ((𝑓𝑦)(dist‘𝑦 / 𝑥𝑅)(𝑔𝑦)))
17 prdsdsf.y . . . . . . . . . . . . . 14 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
18 prdsdsf.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑌)
19 prdsdsf.s . . . . . . . . . . . . . . 15 (𝜑𝑆𝑊)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
21 prdsdsf.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑋)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑋)
23 prdsdsf.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑅)
24 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
2517, 18, 20, 22, 5, 23, 24prdsbascl 17394 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
26 nfcsb1v 3870 . . . . . . . . . . . . . . 15 𝑥𝑦 / 𝑥𝑉
2726nfel2 2914 . . . . . . . . . . . . . 14 𝑥(𝑓𝑦) ∈ 𝑦 / 𝑥𝑉
28 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
29 csbeq1a 3860 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦𝑉 = 𝑦 / 𝑥𝑉)
3028, 29eleq12d 2827 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑉 ↔ (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉))
3127, 30rspc 3561 . . . . . . . . . . . . 13 (𝑦𝐼 → (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 → (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉))
3225, 31mpan9 506 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉)
33 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
3417, 18, 20, 22, 5, 23, 33prdsbascl 17394 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
3526nfel2 2914 . . . . . . . . . . . . . 14 𝑥(𝑔𝑦) ∈ 𝑦 / 𝑥𝑉
36 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
3736, 29eleq12d 2827 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑔𝑥) ∈ 𝑉 ↔ (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉))
3835, 37rspc 3561 . . . . . . . . . . . . 13 (𝑦𝐼 → (∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉 → (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉))
3934, 38mpan9 506 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉)
4032, 39ovresd 7522 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) = ((𝑓𝑦)(dist‘𝑦 / 𝑥𝑅)(𝑔𝑦)))
4116, 40eqtr4d 2771 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) = ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)))
42 prdsdsf.m . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
4342ralrimiva 3125 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
4443adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
45 nfcv 2895 . . . . . . . . . . . . . . . 16 𝑥dist
4645, 6nffv 6841 . . . . . . . . . . . . . . 15 𝑥(dist‘𝑦 / 𝑥𝑅)
4726, 26nfxp 5654 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)
4846, 47nfres 5937 . . . . . . . . . . . . . 14 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))
49 nfcv 2895 . . . . . . . . . . . . . . 15 𝑥∞Met
5049, 26nffv 6841 . . . . . . . . . . . . . 14 𝑥(∞Met‘𝑦 / 𝑥𝑉)
5148, 50nfel 2910 . . . . . . . . . . . . 13 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)
52 prdsdsf.e . . . . . . . . . . . . . . 15 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
538fveq2d 6835 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘𝑦 / 𝑥𝑅))
5429sqxpeqd 5653 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑉 × 𝑉) = (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))
5553, 54reseq12d 5936 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)))
5652, 55eqtrid 2780 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐸 = ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)))
5729fveq2d 6835 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘𝑦 / 𝑥𝑉))
5856, 57eleq12d 2827 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)))
5951, 58rspc 3561 . . . . . . . . . . . 12 (𝑦𝐼 → (∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)))
6044, 59mpan9 506 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉))
61 xmetcl 24266 . . . . . . . . . . 11 ((((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉) ∧ (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉 ∧ (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) ∈ ℝ*)
6260, 32, 39, 61syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) ∈ ℝ*)
6341, 62eqeltrd 2833 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) ∈ ℝ*)
6463fmpttd 7057 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))):𝐼⟶ℝ*)
6564frnd 6667 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ⊆ ℝ*)
66 0xr 11170 . . . . . . . . 9 0 ∈ ℝ*
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ*)
6867snssd 4762 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ*)
6965, 68unssd 4141 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ*)
70 supxrcl 13221 . . . . . 6 ((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ* → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ*)
7169, 70syl 17 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ*)
72 ssun2 4128 . . . . . . 7 {0} ⊆ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})
73 c0ex 11117 . . . . . . . 8 0 ∈ V
7473snss 4738 . . . . . . 7 (0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ↔ {0} ⊆ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}))
7572, 74mpbir 231 . . . . . 6 0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})
76 supxrub 13230 . . . . . 6 (((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ* ∧ 0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})) → 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
7769, 75, 76sylancl 586 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
78 elxrge0 13364 . . . . 5 (sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞) ↔ (sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )))
7971, 77, 78sylanbrc 583 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞))
8079ralrimivva 3176 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞))
81 eqid 2733 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
8281fmpo 8009 . . 3 (∀𝑓𝐵𝑔𝐵 sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞) ↔ (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞))
8380, 82sylib 218 . 2 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞))
8421mptexd 7167 . . . 4 (𝜑 → (𝑥𝐼𝑅) ∈ V)
852ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
86 dmmptg 6197 . . . . 5 (∀𝑥𝐼 𝑅𝑍 → dom (𝑥𝐼𝑅) = 𝐼)
8785, 86syl 17 . . . 4 (𝜑 → dom (𝑥𝐼𝑅) = 𝐼)
88 prdsdsf.d . . . 4 𝐷 = (dist‘𝑌)
8917, 19, 84, 18, 87, 88prdsds 17375 . . 3 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )))
9089feq1d 6641 . 2 (𝜑 → (𝐷:(𝐵 × 𝐵)⟶(0[,]+∞) ↔ (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞)))
9183, 90mpbird 257 1 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  csb 3846  cun 3896  wss 3898  {csn 4577   class class class wbr 5095  cmpt 5176   × cxp 5619  dom cdm 5621  ran crn 5622  cres 5623  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  supcsup 9335  0cc0 11017  +∞cpnf 11154  *cxr 11156   < clt 11157  cle 11158  [,]cicc 13255  Basecbs 17127  distcds 17177  Xscprds 17356  ∞Metcxmet 21285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-icc 13259  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-prds 17358  df-xmet 21293
This theorem is referenced by:  prdsxmetlem  24303  prdsmet  24305
  Copyright terms: Public domain W3C validator