MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsf Structured version   Visualization version   GIF version

Theorem prdsdsf 23591
Description: The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsdsf (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsdsf
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → 𝑦𝐼)
2 prdsdsf.r . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑅𝑍)
32elexd 3461 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐼) → 𝑅 ∈ V)
43ralrimiva 3140 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐼 𝑅 ∈ V)
54adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅 ∈ V)
6 nfcsb1v 3866 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑅
76nfel1 2921 . . . . . . . . . . . . . . . 16 𝑥𝑦 / 𝑥𝑅 ∈ V
8 csbeq1a 3855 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
98eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑅 ∈ V ↔ 𝑦 / 𝑥𝑅 ∈ V))
107, 9rspc 3558 . . . . . . . . . . . . . . 15 (𝑦𝐼 → (∀𝑥𝐼 𝑅 ∈ V → 𝑦 / 𝑥𝑅 ∈ V))
115, 10mpan9 507 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → 𝑦 / 𝑥𝑅 ∈ V)
12 eqid 2737 . . . . . . . . . . . . . . 15 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
1312fvmpts 6915 . . . . . . . . . . . . . 14 ((𝑦𝐼𝑦 / 𝑥𝑅 ∈ V) → ((𝑥𝐼𝑅)‘𝑦) = 𝑦 / 𝑥𝑅)
141, 11, 13syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑥𝐼𝑅)‘𝑦) = 𝑦 / 𝑥𝑅)
1514fveq2d 6813 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘𝑦 / 𝑥𝑅))
1615oveqd 7330 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) = ((𝑓𝑦)(dist‘𝑦 / 𝑥𝑅)(𝑔𝑦)))
17 prdsdsf.y . . . . . . . . . . . . . 14 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
18 prdsdsf.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑌)
19 prdsdsf.s . . . . . . . . . . . . . . 15 (𝜑𝑆𝑊)
2019adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
21 prdsdsf.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑋)
2221adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑋)
23 prdsdsf.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑅)
24 simprl 768 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
2517, 18, 20, 22, 5, 23, 24prdsbascl 17261 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
26 nfcsb1v 3866 . . . . . . . . . . . . . . 15 𝑥𝑦 / 𝑥𝑉
2726nfel2 2923 . . . . . . . . . . . . . 14 𝑥(𝑓𝑦) ∈ 𝑦 / 𝑥𝑉
28 fveq2 6809 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
29 csbeq1a 3855 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦𝑉 = 𝑦 / 𝑥𝑉)
3028, 29eleq12d 2832 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑉 ↔ (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉))
3127, 30rspc 3558 . . . . . . . . . . . . 13 (𝑦𝐼 → (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 → (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉))
3225, 31mpan9 507 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉)
33 simprr 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
3417, 18, 20, 22, 5, 23, 33prdsbascl 17261 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
3526nfel2 2923 . . . . . . . . . . . . . 14 𝑥(𝑔𝑦) ∈ 𝑦 / 𝑥𝑉
36 fveq2 6809 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
3736, 29eleq12d 2832 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑔𝑥) ∈ 𝑉 ↔ (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉))
3835, 37rspc 3558 . . . . . . . . . . . . 13 (𝑦𝐼 → (∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉 → (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉))
3934, 38mpan9 507 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉)
4032, 39ovresd 7477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) = ((𝑓𝑦)(dist‘𝑦 / 𝑥𝑅)(𝑔𝑦)))
4116, 40eqtr4d 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) = ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)))
42 prdsdsf.m . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
4342ralrimiva 3140 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
4443adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
45 nfcv 2905 . . . . . . . . . . . . . . . 16 𝑥dist
4645, 6nffv 6819 . . . . . . . . . . . . . . 15 𝑥(dist‘𝑦 / 𝑥𝑅)
4726, 26nfxp 5638 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)
4846, 47nfres 5910 . . . . . . . . . . . . . 14 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))
49 nfcv 2905 . . . . . . . . . . . . . . 15 𝑥∞Met
5049, 26nffv 6819 . . . . . . . . . . . . . 14 𝑥(∞Met‘𝑦 / 𝑥𝑉)
5148, 50nfel 2919 . . . . . . . . . . . . 13 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)
52 prdsdsf.e . . . . . . . . . . . . . . 15 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
538fveq2d 6813 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘𝑦 / 𝑥𝑅))
5429sqxpeqd 5637 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑉 × 𝑉) = (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))
5553, 54reseq12d 5909 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)))
5652, 55eqtrid 2789 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐸 = ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)))
5729fveq2d 6813 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘𝑦 / 𝑥𝑉))
5856, 57eleq12d 2832 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)))
5951, 58rspc 3558 . . . . . . . . . . . 12 (𝑦𝐼 → (∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉)))
6044, 59mpan9 507 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉))
61 xmetcl 23555 . . . . . . . . . . 11 ((((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉)) ∈ (∞Met‘𝑦 / 𝑥𝑉) ∧ (𝑓𝑦) ∈ 𝑦 / 𝑥𝑉 ∧ (𝑔𝑦) ∈ 𝑦 / 𝑥𝑉) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) ∈ ℝ*)
6260, 32, 39, 61syl3anc 1370 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)((dist‘𝑦 / 𝑥𝑅) ↾ (𝑦 / 𝑥𝑉 × 𝑦 / 𝑥𝑉))(𝑔𝑦)) ∈ ℝ*)
6341, 62eqeltrd 2838 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑦𝐼) → ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦)) ∈ ℝ*)
6463fmpttd 7026 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))):𝐼⟶ℝ*)
6564frnd 6643 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ⊆ ℝ*)
66 0xr 11092 . . . . . . . . 9 0 ∈ ℝ*
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ*)
6867snssd 4752 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ*)
6965, 68unssd 4130 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ*)
70 supxrcl 13119 . . . . . 6 ((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ* → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ*)
7169, 70syl 17 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ*)
72 ssun2 4117 . . . . . . 7 {0} ⊆ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})
73 c0ex 11039 . . . . . . . 8 0 ∈ V
7473snss 4729 . . . . . . 7 (0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ↔ {0} ⊆ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}))
7572, 74mpbir 230 . . . . . 6 0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})
76 supxrub 13128 . . . . . 6 (((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}) ⊆ ℝ* ∧ 0 ∈ (ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0})) → 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
7769, 75, 76sylancl 586 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
78 elxrge0 13259 . . . . 5 (sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞) ↔ (sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )))
7971, 77, 78sylanbrc 583 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞))
8079ralrimivva 3194 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞))
81 eqid 2737 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ))
8281fmpo 7951 . . 3 (∀𝑓𝐵𝑔𝐵 sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < ) ∈ (0[,]+∞) ↔ (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞))
8380, 82sylib 217 . 2 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞))
8421mptexd 7137 . . . 4 (𝜑 → (𝑥𝐼𝑅) ∈ V)
852ralrimiva 3140 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
86 dmmptg 6165 . . . . 5 (∀𝑥𝐼 𝑅𝑍 → dom (𝑥𝐼𝑅) = 𝐼)
8785, 86syl 17 . . . 4 (𝜑 → dom (𝑥𝐼𝑅) = 𝐼)
88 prdsdsf.d . . . 4 𝐷 = (dist‘𝑌)
8917, 19, 84, 18, 87, 88prdsds 17242 . . 3 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )))
9089feq1d 6620 . 2 (𝜑 → (𝐷:(𝐵 × 𝐵)⟶(0[,]+∞) ↔ (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑦𝐼 ↦ ((𝑓𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝑔𝑦))) ∪ {0}), ℝ*, < )):(𝐵 × 𝐵)⟶(0[,]+∞)))
9183, 90mpbird 256 1 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  Vcvv 3441  csb 3841  cun 3894  wss 3896  {csn 4569   class class class wbr 5085  cmpt 5168   × cxp 5603  dom cdm 5605  ran crn 5606  cres 5607  wf 6459  cfv 6463  (class class class)co 7313  cmpo 7315  supcsup 9267  0cc0 10941  +∞cpnf 11076  *cxr 11078   < clt 11079  cle 11080  [,]cicc 13152  Basecbs 16979  distcds 17038  Xscprds 17223  ∞Metcxmet 20653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-map 8663  df-ixp 8732  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-uz 12653  df-icc 13156  df-fz 13310  df-struct 16915  df-slot 16950  df-ndx 16962  df-base 16980  df-plusg 17042  df-mulr 17043  df-sca 17045  df-vsca 17046  df-ip 17047  df-tset 17048  df-ple 17049  df-ds 17051  df-hom 17053  df-cco 17054  df-prds 17225  df-xmet 20661
This theorem is referenced by:  prdsxmetlem  23592  prdsmet  23594
  Copyright terms: Public domain W3C validator