MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmet Structured version   Visualization version   GIF version

Theorem prdsxmet 24264
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24263. (Contributed by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsxmet (𝜑𝐷 ∈ (∞Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsxmet
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsdsf.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 nfcv 2892 . . . . 5 𝑦𝑅
3 nfcsb1v 3889 . . . . 5 𝑥𝑦 / 𝑥𝑅
4 csbeq1a 3879 . . . . 5 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
52, 3, 4cbvmpt 5212 . . . 4 (𝑥𝐼𝑅) = (𝑦𝐼𝑦 / 𝑥𝑅)
65oveq2i 7401 . . 3 (𝑆Xs(𝑥𝐼𝑅)) = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
71, 6eqtri 2753 . 2 𝑌 = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
8 prdsdsf.b . 2 𝐵 = (Base‘𝑌)
9 eqid 2730 . 2 (Base‘𝑦 / 𝑥𝑅) = (Base‘𝑦 / 𝑥𝑅)
10 eqid 2730 . 2 ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
11 prdsdsf.d . 2 𝐷 = (dist‘𝑌)
12 prdsdsf.s . 2 (𝜑𝑆𝑊)
13 prdsdsf.i . 2 (𝜑𝐼𝑋)
14 prdsdsf.r . . . . 5 ((𝜑𝑥𝐼) → 𝑅𝑍)
1514elexd 3474 . . . 4 ((𝜑𝑥𝐼) → 𝑅 ∈ V)
1615ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐼 𝑅 ∈ V)
173nfel1 2909 . . . 4 𝑥𝑦 / 𝑥𝑅 ∈ V
184eleq1d 2814 . . . 4 (𝑥 = 𝑦 → (𝑅 ∈ V ↔ 𝑦 / 𝑥𝑅 ∈ V))
1917, 18rspc 3579 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝑅 ∈ V → 𝑦 / 𝑥𝑅 ∈ V))
2016, 19mpan9 506 . 2 ((𝜑𝑦𝐼) → 𝑦 / 𝑥𝑅 ∈ V)
21 prdsdsf.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
2221ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
23 nfcv 2892 . . . . . . 7 𝑥dist
2423, 3nffv 6871 . . . . . 6 𝑥(dist‘𝑦 / 𝑥𝑅)
25 nfcv 2892 . . . . . . . 8 𝑥Base
2625, 3nffv 6871 . . . . . . 7 𝑥(Base‘𝑦 / 𝑥𝑅)
2726, 26nfxp 5674 . . . . . 6 𝑥((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))
2824, 27nfres 5955 . . . . 5 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
29 nfcv 2892 . . . . . 6 𝑥∞Met
3029, 26nffv 6871 . . . . 5 𝑥(∞Met‘(Base‘𝑦 / 𝑥𝑅))
3128, 30nfel 2907 . . . 4 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))
32 prdsdsf.e . . . . . 6 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
334fveq2d 6865 . . . . . . 7 (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘𝑦 / 𝑥𝑅))
34 prdsdsf.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
354fveq2d 6865 . . . . . . . . 9 (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘𝑦 / 𝑥𝑅))
3634, 35eqtrid 2777 . . . . . . . 8 (𝑥 = 𝑦𝑉 = (Base‘𝑦 / 𝑥𝑅))
3736sqxpeqd 5673 . . . . . . 7 (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
3833, 37reseq12d 5954 . . . . . 6 (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
3932, 38eqtrid 2777 . . . . 5 (𝑥 = 𝑦𝐸 = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
4036fveq2d 6865 . . . . 5 (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
4139, 40eleq12d 2823 . . . 4 (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4231, 41rspc 3579 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4322, 42mpan9 506 . 2 ((𝜑𝑦𝐼) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
447, 8, 9, 10, 11, 12, 13, 20, 43prdsxmetlem 24263 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  csb 3865  cmpt 5191   × cxp 5639  cres 5643  cfv 6514  (class class class)co 7390  Basecbs 17186  distcds 17236  Xscprds 17415  ∞Metcxmet 21256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-prds 17417  df-xmet 21264
This theorem is referenced by:  prdsmet  24265  xpsxmetlem  24274  prdsbl  24386  prdsxmslem1  24423
  Copyright terms: Public domain W3C validator