MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmet Structured version   Visualization version   GIF version

Theorem prdsxmet 23072
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 23071. (Contributed by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsxmet (𝜑𝐷 ∈ (∞Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsxmet
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsdsf.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 nfcv 2920 . . . . 5 𝑦𝑅
3 nfcsb1v 3830 . . . . 5 𝑥𝑦 / 𝑥𝑅
4 csbeq1a 3820 . . . . 5 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
52, 3, 4cbvmpt 5134 . . . 4 (𝑥𝐼𝑅) = (𝑦𝐼𝑦 / 𝑥𝑅)
65oveq2i 7162 . . 3 (𝑆Xs(𝑥𝐼𝑅)) = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
71, 6eqtri 2782 . 2 𝑌 = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
8 prdsdsf.b . 2 𝐵 = (Base‘𝑌)
9 eqid 2759 . 2 (Base‘𝑦 / 𝑥𝑅) = (Base‘𝑦 / 𝑥𝑅)
10 eqid 2759 . 2 ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
11 prdsdsf.d . 2 𝐷 = (dist‘𝑌)
12 prdsdsf.s . 2 (𝜑𝑆𝑊)
13 prdsdsf.i . 2 (𝜑𝐼𝑋)
14 prdsdsf.r . . . . 5 ((𝜑𝑥𝐼) → 𝑅𝑍)
1514elexd 3431 . . . 4 ((𝜑𝑥𝐼) → 𝑅 ∈ V)
1615ralrimiva 3114 . . 3 (𝜑 → ∀𝑥𝐼 𝑅 ∈ V)
173nfel1 2936 . . . 4 𝑥𝑦 / 𝑥𝑅 ∈ V
184eleq1d 2837 . . . 4 (𝑥 = 𝑦 → (𝑅 ∈ V ↔ 𝑦 / 𝑥𝑅 ∈ V))
1917, 18rspc 3530 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝑅 ∈ V → 𝑦 / 𝑥𝑅 ∈ V))
2016, 19mpan9 511 . 2 ((𝜑𝑦𝐼) → 𝑦 / 𝑥𝑅 ∈ V)
21 prdsdsf.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
2221ralrimiva 3114 . . 3 (𝜑 → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
23 nfcv 2920 . . . . . . 7 𝑥dist
2423, 3nffv 6669 . . . . . 6 𝑥(dist‘𝑦 / 𝑥𝑅)
25 nfcv 2920 . . . . . . . 8 𝑥Base
2625, 3nffv 6669 . . . . . . 7 𝑥(Base‘𝑦 / 𝑥𝑅)
2726, 26nfxp 5558 . . . . . 6 𝑥((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))
2824, 27nfres 5826 . . . . 5 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
29 nfcv 2920 . . . . . 6 𝑥∞Met
3029, 26nffv 6669 . . . . 5 𝑥(∞Met‘(Base‘𝑦 / 𝑥𝑅))
3128, 30nfel 2934 . . . 4 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))
32 prdsdsf.e . . . . . 6 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
334fveq2d 6663 . . . . . . 7 (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘𝑦 / 𝑥𝑅))
34 prdsdsf.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
354fveq2d 6663 . . . . . . . . 9 (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘𝑦 / 𝑥𝑅))
3634, 35syl5eq 2806 . . . . . . . 8 (𝑥 = 𝑦𝑉 = (Base‘𝑦 / 𝑥𝑅))
3736sqxpeqd 5557 . . . . . . 7 (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
3833, 37reseq12d 5825 . . . . . 6 (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
3932, 38syl5eq 2806 . . . . 5 (𝑥 = 𝑦𝐸 = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
4036fveq2d 6663 . . . . 5 (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
4139, 40eleq12d 2847 . . . 4 (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4231, 41rspc 3530 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4322, 42mpan9 511 . 2 ((𝜑𝑦𝐼) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
447, 8, 9, 10, 11, 12, 13, 20, 43prdsxmetlem 23071 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  Vcvv 3410  csb 3806  cmpt 5113   × cxp 5523  cres 5527  cfv 6336  (class class class)co 7151  Basecbs 16542  distcds 16633  Xscprds 16778  ∞Metcxmet 20152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8940  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-rp 12432  df-xneg 12549  df-xadd 12550  df-xmul 12551  df-icc 12787  df-fz 12941  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-plusg 16637  df-mulr 16638  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-hom 16648  df-cco 16649  df-prds 16780  df-xmet 20160
This theorem is referenced by:  prdsmet  23073  xpsxmetlem  23082  prdsbl  23194  prdsxmslem1  23231
  Copyright terms: Public domain W3C validator