| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsxmet | Structured version Visualization version GIF version | ||
| Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24256. (Contributed by Mario Carneiro, 26-Sep-2015.) |
| Ref | Expression |
|---|---|
| prdsdsf.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| prdsdsf.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsdsf.v | ⊢ 𝑉 = (Base‘𝑅) |
| prdsdsf.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
| prdsdsf.d | ⊢ 𝐷 = (dist‘𝑌) |
| prdsdsf.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| prdsdsf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| prdsdsf.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) |
| prdsdsf.m | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
| Ref | Expression |
|---|---|
| prdsxmet | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsdsf.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
| 3 | nfcsb1v 3886 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 | |
| 4 | csbeq1a 3876 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑅 = ⦋𝑦 / 𝑥⦌𝑅) | |
| 5 | 2, 3, 4 | cbvmpt 5209 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅) |
| 6 | 5 | oveq2i 7398 | . . 3 ⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
| 7 | 1, 6 | eqtri 2752 | . 2 ⊢ 𝑌 = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
| 8 | prdsdsf.b | . 2 ⊢ 𝐵 = (Base‘𝑌) | |
| 9 | eqid 2729 | . 2 ⊢ (Base‘⦋𝑦 / 𝑥⦌𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅) | |
| 10 | eqid 2729 | . 2 ⊢ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) | |
| 11 | prdsdsf.d | . 2 ⊢ 𝐷 = (dist‘𝑌) | |
| 12 | prdsdsf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 13 | prdsdsf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 14 | prdsdsf.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) | |
| 15 | 14 | elexd 3471 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
| 16 | 15 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ V) |
| 17 | 3 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 ∈ V |
| 18 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑅 ∈ V ↔ ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
| 19 | 17, 18 | rspc 3576 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝑅 ∈ V → ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
| 20 | 16, 19 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ⦋𝑦 / 𝑥⦌𝑅 ∈ V) |
| 21 | prdsdsf.m | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) | |
| 22 | 21 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉)) |
| 23 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥dist | |
| 24 | 23, 3 | nffv 6868 | . . . . . 6 ⊢ Ⅎ𝑥(dist‘⦋𝑦 / 𝑥⦌𝑅) |
| 25 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑥Base | |
| 26 | 25, 3 | nffv 6868 | . . . . . . 7 ⊢ Ⅎ𝑥(Base‘⦋𝑦 / 𝑥⦌𝑅) |
| 27 | 26, 26 | nfxp 5671 | . . . . . 6 ⊢ Ⅎ𝑥((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 28 | 24, 27 | nfres 5952 | . . . . 5 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 29 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥∞Met | |
| 30 | 29, 26 | nffv 6868 | . . . . 5 ⊢ Ⅎ𝑥(∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 31 | 28, 30 | nfel 2906 | . . . 4 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 32 | prdsdsf.e | . . . . . 6 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
| 33 | 4 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘⦋𝑦 / 𝑥⦌𝑅)) |
| 34 | prdsdsf.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑅) | |
| 35 | 4 | fveq2d 6862 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 36 | 34, 35 | eqtrid 2776 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑉 = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 37 | 36 | sqxpeqd 5670 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 38 | 33, 37 | reseq12d 5951 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 39 | 32, 38 | eqtrid 2776 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐸 = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 40 | 36 | fveq2d 6862 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 41 | 39, 40 | eleq12d 2822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 42 | 31, 41 | rspc 3576 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 43 | 22, 42 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 44 | 7, 8, 9, 10, 11, 12, 13, 20, 43 | prdsxmetlem 24256 | 1 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⦋csb 3862 ↦ cmpt 5188 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 Xscprds 17408 ∞Metcxmet 21249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-prds 17410 df-xmet 21257 |
| This theorem is referenced by: prdsmet 24258 xpsxmetlem 24267 prdsbl 24379 prdsxmslem1 24416 |
| Copyright terms: Public domain | W3C validator |