MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmet Structured version   Visualization version   GIF version

Theorem prdsxmet 24257
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24256. (Contributed by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsxmet (𝜑𝐷 ∈ (∞Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsxmet
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsdsf.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 nfcv 2891 . . . . 5 𝑦𝑅
3 nfcsb1v 3886 . . . . 5 𝑥𝑦 / 𝑥𝑅
4 csbeq1a 3876 . . . . 5 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
52, 3, 4cbvmpt 5209 . . . 4 (𝑥𝐼𝑅) = (𝑦𝐼𝑦 / 𝑥𝑅)
65oveq2i 7398 . . 3 (𝑆Xs(𝑥𝐼𝑅)) = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
71, 6eqtri 2752 . 2 𝑌 = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
8 prdsdsf.b . 2 𝐵 = (Base‘𝑌)
9 eqid 2729 . 2 (Base‘𝑦 / 𝑥𝑅) = (Base‘𝑦 / 𝑥𝑅)
10 eqid 2729 . 2 ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
11 prdsdsf.d . 2 𝐷 = (dist‘𝑌)
12 prdsdsf.s . 2 (𝜑𝑆𝑊)
13 prdsdsf.i . 2 (𝜑𝐼𝑋)
14 prdsdsf.r . . . . 5 ((𝜑𝑥𝐼) → 𝑅𝑍)
1514elexd 3471 . . . 4 ((𝜑𝑥𝐼) → 𝑅 ∈ V)
1615ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐼 𝑅 ∈ V)
173nfel1 2908 . . . 4 𝑥𝑦 / 𝑥𝑅 ∈ V
184eleq1d 2813 . . . 4 (𝑥 = 𝑦 → (𝑅 ∈ V ↔ 𝑦 / 𝑥𝑅 ∈ V))
1917, 18rspc 3576 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝑅 ∈ V → 𝑦 / 𝑥𝑅 ∈ V))
2016, 19mpan9 506 . 2 ((𝜑𝑦𝐼) → 𝑦 / 𝑥𝑅 ∈ V)
21 prdsdsf.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
2221ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
23 nfcv 2891 . . . . . . 7 𝑥dist
2423, 3nffv 6868 . . . . . 6 𝑥(dist‘𝑦 / 𝑥𝑅)
25 nfcv 2891 . . . . . . . 8 𝑥Base
2625, 3nffv 6868 . . . . . . 7 𝑥(Base‘𝑦 / 𝑥𝑅)
2726, 26nfxp 5671 . . . . . 6 𝑥((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))
2824, 27nfres 5952 . . . . 5 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
29 nfcv 2891 . . . . . 6 𝑥∞Met
3029, 26nffv 6868 . . . . 5 𝑥(∞Met‘(Base‘𝑦 / 𝑥𝑅))
3128, 30nfel 2906 . . . 4 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))
32 prdsdsf.e . . . . . 6 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
334fveq2d 6862 . . . . . . 7 (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘𝑦 / 𝑥𝑅))
34 prdsdsf.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
354fveq2d 6862 . . . . . . . . 9 (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘𝑦 / 𝑥𝑅))
3634, 35eqtrid 2776 . . . . . . . 8 (𝑥 = 𝑦𝑉 = (Base‘𝑦 / 𝑥𝑅))
3736sqxpeqd 5670 . . . . . . 7 (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
3833, 37reseq12d 5951 . . . . . 6 (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
3932, 38eqtrid 2776 . . . . 5 (𝑥 = 𝑦𝐸 = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
4036fveq2d 6862 . . . . 5 (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
4139, 40eleq12d 2822 . . . 4 (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4231, 41rspc 3576 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4322, 42mpan9 506 . 2 ((𝜑𝑦𝐼) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
447, 8, 9, 10, 11, 12, 13, 20, 43prdsxmetlem 24256 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  csb 3862  cmpt 5188   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  Basecbs 17179  distcds 17229  Xscprds 17408  ∞Metcxmet 21249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-prds 17410  df-xmet 21257
This theorem is referenced by:  prdsmet  24258  xpsxmetlem  24267  prdsbl  24379  prdsxmslem1  24416
  Copyright terms: Public domain W3C validator