| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsxmet | Structured version Visualization version GIF version | ||
| Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24232. (Contributed by Mario Carneiro, 26-Sep-2015.) |
| Ref | Expression |
|---|---|
| prdsdsf.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| prdsdsf.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsdsf.v | ⊢ 𝑉 = (Base‘𝑅) |
| prdsdsf.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
| prdsdsf.d | ⊢ 𝐷 = (dist‘𝑌) |
| prdsdsf.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| prdsdsf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| prdsdsf.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) |
| prdsdsf.m | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
| Ref | Expression |
|---|---|
| prdsxmet | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsdsf.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
| 3 | nfcsb1v 3883 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 | |
| 4 | csbeq1a 3873 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑅 = ⦋𝑦 / 𝑥⦌𝑅) | |
| 5 | 2, 3, 4 | cbvmpt 5204 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅) |
| 6 | 5 | oveq2i 7380 | . . 3 ⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
| 7 | 1, 6 | eqtri 2752 | . 2 ⊢ 𝑌 = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
| 8 | prdsdsf.b | . 2 ⊢ 𝐵 = (Base‘𝑌) | |
| 9 | eqid 2729 | . 2 ⊢ (Base‘⦋𝑦 / 𝑥⦌𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅) | |
| 10 | eqid 2729 | . 2 ⊢ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) | |
| 11 | prdsdsf.d | . 2 ⊢ 𝐷 = (dist‘𝑌) | |
| 12 | prdsdsf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 13 | prdsdsf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 14 | prdsdsf.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) | |
| 15 | 14 | elexd 3468 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
| 16 | 15 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ V) |
| 17 | 3 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 ∈ V |
| 18 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑅 ∈ V ↔ ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
| 19 | 17, 18 | rspc 3573 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝑅 ∈ V → ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
| 20 | 16, 19 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ⦋𝑦 / 𝑥⦌𝑅 ∈ V) |
| 21 | prdsdsf.m | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) | |
| 22 | 21 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉)) |
| 23 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥dist | |
| 24 | 23, 3 | nffv 6850 | . . . . . 6 ⊢ Ⅎ𝑥(dist‘⦋𝑦 / 𝑥⦌𝑅) |
| 25 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑥Base | |
| 26 | 25, 3 | nffv 6850 | . . . . . . 7 ⊢ Ⅎ𝑥(Base‘⦋𝑦 / 𝑥⦌𝑅) |
| 27 | 26, 26 | nfxp 5664 | . . . . . 6 ⊢ Ⅎ𝑥((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 28 | 24, 27 | nfres 5941 | . . . . 5 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 29 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥∞Met | |
| 30 | 29, 26 | nffv 6850 | . . . . 5 ⊢ Ⅎ𝑥(∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 31 | 28, 30 | nfel 2906 | . . . 4 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 32 | prdsdsf.e | . . . . . 6 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
| 33 | 4 | fveq2d 6844 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘⦋𝑦 / 𝑥⦌𝑅)) |
| 34 | prdsdsf.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑅) | |
| 35 | 4 | fveq2d 6844 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 36 | 34, 35 | eqtrid 2776 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑉 = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 37 | 36 | sqxpeqd 5663 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 38 | 33, 37 | reseq12d 5940 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 39 | 32, 38 | eqtrid 2776 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐸 = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 40 | 36 | fveq2d 6844 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 41 | 39, 40 | eleq12d 2822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 42 | 31, 41 | rspc 3573 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 43 | 22, 42 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 44 | 7, 8, 9, 10, 11, 12, 13, 20, 43 | prdsxmetlem 24232 | 1 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⦋csb 3859 ↦ cmpt 5183 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 Xscprds 17384 ∞Metcxmet 21225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-prds 17386 df-xmet 21233 |
| This theorem is referenced by: prdsmet 24234 xpsxmetlem 24243 prdsbl 24355 prdsxmslem1 24392 |
| Copyright terms: Public domain | W3C validator |