| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsxmet | Structured version Visualization version GIF version | ||
| Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24303. (Contributed by Mario Carneiro, 26-Sep-2015.) |
| Ref | Expression |
|---|---|
| prdsdsf.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| prdsdsf.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsdsf.v | ⊢ 𝑉 = (Base‘𝑅) |
| prdsdsf.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
| prdsdsf.d | ⊢ 𝐷 = (dist‘𝑌) |
| prdsdsf.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| prdsdsf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| prdsdsf.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) |
| prdsdsf.m | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
| Ref | Expression |
|---|---|
| prdsxmet | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsdsf.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
| 2 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
| 3 | nfcsb1v 3870 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 | |
| 4 | csbeq1a 3860 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑅 = ⦋𝑦 / 𝑥⦌𝑅) | |
| 5 | 2, 3, 4 | cbvmpt 5197 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅) |
| 6 | 5 | oveq2i 7366 | . . 3 ⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
| 7 | 1, 6 | eqtri 2756 | . 2 ⊢ 𝑌 = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
| 8 | prdsdsf.b | . 2 ⊢ 𝐵 = (Base‘𝑌) | |
| 9 | eqid 2733 | . 2 ⊢ (Base‘⦋𝑦 / 𝑥⦌𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅) | |
| 10 | eqid 2733 | . 2 ⊢ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) | |
| 11 | prdsdsf.d | . 2 ⊢ 𝐷 = (dist‘𝑌) | |
| 12 | prdsdsf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 13 | prdsdsf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 14 | prdsdsf.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) | |
| 15 | 14 | elexd 3461 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
| 16 | 15 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ V) |
| 17 | 3 | nfel1 2912 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 ∈ V |
| 18 | 4 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑅 ∈ V ↔ ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
| 19 | 17, 18 | rspc 3561 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝑅 ∈ V → ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
| 20 | 16, 19 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ⦋𝑦 / 𝑥⦌𝑅 ∈ V) |
| 21 | prdsdsf.m | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) | |
| 22 | 21 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉)) |
| 23 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥dist | |
| 24 | 23, 3 | nffv 6841 | . . . . . 6 ⊢ Ⅎ𝑥(dist‘⦋𝑦 / 𝑥⦌𝑅) |
| 25 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑥Base | |
| 26 | 25, 3 | nffv 6841 | . . . . . . 7 ⊢ Ⅎ𝑥(Base‘⦋𝑦 / 𝑥⦌𝑅) |
| 27 | 26, 26 | nfxp 5654 | . . . . . 6 ⊢ Ⅎ𝑥((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 28 | 24, 27 | nfres 5937 | . . . . 5 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 29 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥∞Met | |
| 30 | 29, 26 | nffv 6841 | . . . . 5 ⊢ Ⅎ𝑥(∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 31 | 28, 30 | nfel 2910 | . . . 4 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 32 | prdsdsf.e | . . . . . 6 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
| 33 | 4 | fveq2d 6835 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘⦋𝑦 / 𝑥⦌𝑅)) |
| 34 | prdsdsf.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑅) | |
| 35 | 4 | fveq2d 6835 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 36 | 34, 35 | eqtrid 2780 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑉 = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
| 37 | 36 | sqxpeqd 5653 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 38 | 33, 37 | reseq12d 5936 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 39 | 32, 38 | eqtrid 2780 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐸 = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 40 | 36 | fveq2d 6835 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 41 | 39, 40 | eleq12d 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 42 | 31, 41 | rspc 3561 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
| 43 | 22, 42 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
| 44 | 7, 8, 9, 10, 11, 12, 13, 20, 43 | prdsxmetlem 24303 | 1 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⦋csb 3846 ↦ cmpt 5176 × cxp 5619 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 distcds 17177 Xscprds 17356 ∞Metcxmet 21285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-icc 13259 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-prds 17358 df-xmet 21293 |
| This theorem is referenced by: prdsmet 24305 xpsxmetlem 24314 prdsbl 24426 prdsxmslem1 24463 |
| Copyright terms: Public domain | W3C validator |