Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsxmet | Structured version Visualization version GIF version |
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 23071. (Contributed by Mario Carneiro, 26-Sep-2015.) |
Ref | Expression |
---|---|
prdsdsf.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
prdsdsf.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsdsf.v | ⊢ 𝑉 = (Base‘𝑅) |
prdsdsf.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
prdsdsf.d | ⊢ 𝐷 = (dist‘𝑌) |
prdsdsf.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
prdsdsf.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
prdsdsf.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) |
prdsdsf.m | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
Ref | Expression |
---|---|
prdsxmet | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsdsf.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
2 | nfcv 2920 | . . . . 5 ⊢ Ⅎ𝑦𝑅 | |
3 | nfcsb1v 3830 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 | |
4 | csbeq1a 3820 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑅 = ⦋𝑦 / 𝑥⦌𝑅) | |
5 | 2, 3, 4 | cbvmpt 5134 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅) |
6 | 5 | oveq2i 7162 | . . 3 ⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
7 | 1, 6 | eqtri 2782 | . 2 ⊢ 𝑌 = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ⦋𝑦 / 𝑥⦌𝑅)) |
8 | prdsdsf.b | . 2 ⊢ 𝐵 = (Base‘𝑌) | |
9 | eqid 2759 | . 2 ⊢ (Base‘⦋𝑦 / 𝑥⦌𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅) | |
10 | eqid 2759 | . 2 ⊢ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) | |
11 | prdsdsf.d | . 2 ⊢ 𝐷 = (dist‘𝑌) | |
12 | prdsdsf.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
13 | prdsdsf.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
14 | prdsdsf.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) | |
15 | 14 | elexd 3431 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ V) |
16 | 15 | ralrimiva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ V) |
17 | 3 | nfel1 2936 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 ∈ V |
18 | 4 | eleq1d 2837 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑅 ∈ V ↔ ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
19 | 17, 18 | rspc 3530 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝑅 ∈ V → ⦋𝑦 / 𝑥⦌𝑅 ∈ V)) |
20 | 16, 19 | mpan9 511 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ⦋𝑦 / 𝑥⦌𝑅 ∈ V) |
21 | prdsdsf.m | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) | |
22 | 21 | ralrimiva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉)) |
23 | nfcv 2920 | . . . . . . 7 ⊢ Ⅎ𝑥dist | |
24 | 23, 3 | nffv 6669 | . . . . . 6 ⊢ Ⅎ𝑥(dist‘⦋𝑦 / 𝑥⦌𝑅) |
25 | nfcv 2920 | . . . . . . . 8 ⊢ Ⅎ𝑥Base | |
26 | 25, 3 | nffv 6669 | . . . . . . 7 ⊢ Ⅎ𝑥(Base‘⦋𝑦 / 𝑥⦌𝑅) |
27 | 26, 26 | nfxp 5558 | . . . . . 6 ⊢ Ⅎ𝑥((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
28 | 24, 27 | nfres 5826 | . . . . 5 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
29 | nfcv 2920 | . . . . . 6 ⊢ Ⅎ𝑥∞Met | |
30 | 29, 26 | nffv 6669 | . . . . 5 ⊢ Ⅎ𝑥(∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
31 | 28, 30 | nfel 2934 | . . . 4 ⊢ Ⅎ𝑥((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)) |
32 | prdsdsf.e | . . . . . 6 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
33 | 4 | fveq2d 6663 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘⦋𝑦 / 𝑥⦌𝑅)) |
34 | prdsdsf.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑅) | |
35 | 4 | fveq2d 6663 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
36 | 34, 35 | syl5eq 2806 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑉 = (Base‘⦋𝑦 / 𝑥⦌𝑅)) |
37 | 36 | sqxpeqd 5557 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) |
38 | 33, 37 | reseq12d 5825 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
39 | 32, 38 | syl5eq 2806 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐸 = ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
40 | 36 | fveq2d 6663 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
41 | 39, 40 | eleq12d 2847 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
42 | 31, 41 | rspc 3530 | . . 3 ⊢ (𝑦 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅)))) |
43 | 22, 42 | mpan9 511 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((dist‘⦋𝑦 / 𝑥⦌𝑅) ↾ ((Base‘⦋𝑦 / 𝑥⦌𝑅) × (Base‘⦋𝑦 / 𝑥⦌𝑅))) ∈ (∞Met‘(Base‘⦋𝑦 / 𝑥⦌𝑅))) |
44 | 7, 8, 9, 10, 11, 12, 13, 20, 43 | prdsxmetlem 23071 | 1 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 Vcvv 3410 ⦋csb 3806 ↦ cmpt 5113 × cxp 5523 ↾ cres 5527 ‘cfv 6336 (class class class)co 7151 Basecbs 16542 distcds 16633 Xscprds 16778 ∞Metcxmet 20152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8940 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-rp 12432 df-xneg 12549 df-xadd 12550 df-xmul 12551 df-icc 12787 df-fz 12941 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-plusg 16637 df-mulr 16638 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-hom 16648 df-cco 16649 df-prds 16780 df-xmet 20160 |
This theorem is referenced by: prdsmet 23073 xpsxmetlem 23082 prdsbl 23194 prdsxmslem1 23231 |
Copyright terms: Public domain | W3C validator |