MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idnmhm Structured version   Visualization version   GIF version

Theorem idnmhm 24649
Description: The identity operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
0nmhm.1 𝑉 = (Base‘𝑆)
Assertion
Ref Expression
idnmhm (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 NMHom 𝑆))

Proof of Theorem idnmhm
StepHypRef Expression
1 id 22 . 2 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmMod)
2 nlmlmod 24573 . . . 4 (𝑆 ∈ NrmMod → 𝑆 ∈ LMod)
3 0nmhm.1 . . . . 5 𝑉 = (Base‘𝑆)
43idlmhm 20955 . . . 4 (𝑆 ∈ LMod → ( I ↾ 𝑉) ∈ (𝑆 LMHom 𝑆))
52, 4syl 17 . . 3 (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 LMHom 𝑆))
6 nlmngp 24572 . . . 4 (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp)
73idnghm 24638 . . . 4 (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
86, 7syl 17 . . 3 (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))
95, 8jca 511 . 2 (𝑆 ∈ NrmMod → (( I ↾ 𝑉) ∈ (𝑆 LMHom 𝑆) ∧ ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)))
10 isnmhm 24641 . 2 (( I ↾ 𝑉) ∈ (𝑆 NMHom 𝑆) ↔ ((𝑆 ∈ NrmMod ∧ 𝑆 ∈ NrmMod) ∧ (( I ↾ 𝑉) ∈ (𝑆 LMHom 𝑆) ∧ ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆))))
111, 1, 9, 10syl21anbrc 1345 1 (𝑆 ∈ NrmMod → ( I ↾ 𝑉) ∈ (𝑆 NMHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   I cid 5535  cres 5643  cfv 6514  (class class class)co 7390  Basecbs 17186  LModclmod 20773   LMHom clmhm 20933  NrmGrpcngp 24472  NrmModcnlm 24475   NGHom cnghm 24601   NMHom cnmhm 24602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-ghm 19152  df-lmod 20775  df-lmhm 20936  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nlm 24481  df-nmo 24603  df-nghm 24604  df-nmhm 24605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator