![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nmhm | Structured version Visualization version GIF version |
Description: The zero operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
0nmhm.1 | ⊢ 𝑉 = (Base‘𝑆) |
0nmhm.2 | ⊢ 0 = (0g‘𝑇) |
0nmhm.f | ⊢ 𝐹 = (Scalar‘𝑆) |
0nmhm.g | ⊢ 𝐺 = (Scalar‘𝑇) |
Ref | Expression |
---|---|
0nmhm | ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlmlmod 22890 | . . 3 ⊢ (𝑆 ∈ NrmMod → 𝑆 ∈ LMod) | |
2 | nlmlmod 22890 | . . 3 ⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ LMod) | |
3 | id 22 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐹 = 𝐺) | |
4 | 0nmhm.2 | . . . 4 ⊢ 0 = (0g‘𝑇) | |
5 | 0nmhm.1 | . . . 4 ⊢ 𝑉 = (Base‘𝑆) | |
6 | 0nmhm.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑆) | |
7 | 0nmhm.g | . . . 4 ⊢ 𝐺 = (Scalar‘𝑇) | |
8 | 4, 5, 6, 7 | 0lmhm 19435 | . . 3 ⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 LMHom 𝑇)) |
9 | 1, 2, 3, 8 | syl3an 1160 | . 2 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 LMHom 𝑇)) |
10 | nlmngp 22889 | . . . 4 ⊢ (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp) | |
11 | nlmngp 22889 | . . . 4 ⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp) | |
12 | 5, 4 | 0nghm 22953 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)) |
13 | 10, 11, 12 | syl2an 589 | . . 3 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)) |
14 | 13 | 3adant3 1123 | . 2 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)) |
15 | isnmhm 22958 | . . . 4 ⊢ ((𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ ((𝑉 × { 0 }) ∈ (𝑆 LMHom 𝑇) ∧ (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)))) | |
16 | 15 | baib 531 | . . 3 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) → ((𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑉 × { 0 }) ∈ (𝑆 LMHom 𝑇) ∧ (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)))) |
17 | 16 | 3adant3 1123 | . 2 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → ((𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑉 × { 0 }) ∈ (𝑆 LMHom 𝑇) ∧ (𝑉 × { 0 }) ∈ (𝑆 NGHom 𝑇)))) |
18 | 9, 14, 17 | mpbir2and 703 | 1 ⊢ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ∧ 𝐹 = 𝐺) → (𝑉 × { 0 }) ∈ (𝑆 NMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {csn 4398 × cxp 5353 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 Scalarcsca 16341 0gc0g 16486 LModclmod 19255 LMHom clmhm 19414 NrmGrpcngp 22790 NrmModcnlm 22793 NGHom cnghm 22918 NMHom cnmhm 22919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-n0 11643 df-z 11729 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ico 12493 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-plusg 16351 df-0g 16488 df-topgen 16490 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-ghm 18042 df-mgp 18877 df-ring 18936 df-lmod 19257 df-lmhm 19417 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-xms 22533 df-ms 22534 df-nm 22795 df-ngp 22796 df-nlm 22799 df-nmo 22920 df-nghm 22921 df-nmhm 22922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |