MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpocelbl Structured version   Visualization version   GIF version

Theorem ngpocelbl 23240
Description: Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007.) (Revised by AV, 14-Oct-2021.)
Hypotheses
Ref Expression
ngpocelbl.n 𝑁 = (norm‘𝐺)
ngpocelbl.x 𝑋 = (Base‘𝐺)
ngpocelbl.p + = (+g𝐺)
ngpocelbl.d 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
ngpocelbl ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))

Proof of Theorem ngpocelbl
StepHypRef Expression
1 nlmngp 23213 . . . . . . 7 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
2 ngpocelbl.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 ngpocelbl.d . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
42, 3ngpmet 23139 . . . . . . 7 (𝐺 ∈ NrmGrp → 𝐷 ∈ (Met‘𝑋))
5 metxmet 22871 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
61, 4, 53syl 18 . . . . . 6 (𝐺 ∈ NrmMod → 𝐷 ∈ (∞Met‘𝑋))
76anim1i 614 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
873adant3 1124 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
9 simp3l 1193 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝑃𝑋)
10 ngpgrp 23135 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
111, 10syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Grp)
12113ad2ant1 1125 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Grp)
13 simp3 1130 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋𝐴𝑋))
14 3anass 1087 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Grp ∧ (𝑃𝑋𝐴𝑋)))
1512, 13, 14sylanbrc 583 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋))
16 ngpocelbl.p . . . . . . 7 + = (+g𝐺)
172, 16grpcl 18049 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) → (𝑃 + 𝐴) ∈ 𝑋)
1815, 17syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃 + 𝐴) ∈ 𝑋)
199, 18jca 512 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋))
208, 19jca 512 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)))
21 elbl2 22927 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
2220, 21syl 17 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
233oveqi 7158 . . . . . 6 (𝑃𝐷(𝑃 + 𝐴)) = (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴))
24 ovres 7303 . . . . . 6 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2523, 24syl5eq 2865 . . . . 5 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2619, 25syl 17 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2713ad2ant1 1125 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ NrmGrp)
28 ngpocelbl.n . . . . . 6 𝑁 = (norm‘𝐺)
29 eqid 2818 . . . . . 6 (-g𝐺) = (-g𝐺)
30 eqid 2818 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
3128, 2, 29, 30ngpdsr 23141 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
3227, 9, 18, 31syl3anc 1363 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
33 nlmlmod 23214 . . . . . . . . 9 (𝐺 ∈ NrmMod → 𝐺 ∈ LMod)
34 lmodabl 19610 . . . . . . . . 9 (𝐺 ∈ LMod → 𝐺 ∈ Abel)
3533, 34syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Abel)
36353ad2ant1 1125 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Abel)
37 3anass 1087 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Abel ∧ (𝑃𝑋𝐴𝑋)))
3836, 13, 37sylanbrc 583 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋))
392, 16, 29ablpncan2 18865 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4038, 39syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4140fveq2d 6667 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)) = (𝑁𝐴))
4226, 32, 413eqtrd 2857 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑁𝐴))
4342breq1d 5067 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃𝐷(𝑃 + 𝐴)) < 𝑅 ↔ (𝑁𝐴) < 𝑅))
4422, 43bitrd 280 1 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7145  *cxr 10662   < clt 10663  Basecbs 16471  +gcplusg 16553  distcds 16562  Grpcgrp 18041  -gcsg 18043  Abelcabl 18836  LModclmod 19563  ∞Metcxmet 20458  Metcmet 20459  ballcbl 20460  normcnm 23113  NrmGrpcngp 23114  NrmModcnlm 23117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-topgen 16705  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-lmod 19565  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-xms 22857  df-ms 22858  df-nm 23119  df-ngp 23120  df-nlm 23123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator