Proof of Theorem ngpocelbl
Step | Hyp | Ref
| Expression |
1 | | nlmngp 23841 |
. . . . . . 7
⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp) |
2 | | ngpocelbl.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
3 | | ngpocelbl.d |
. . . . . . . 8
⊢ 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋)) |
4 | 2, 3 | ngpmet 23759 |
. . . . . . 7
⊢ (𝐺 ∈ NrmGrp → 𝐷 ∈ (Met‘𝑋)) |
5 | | metxmet 23487 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 1, 4, 5 | 3syl 18 |
. . . . . 6
⊢ (𝐺 ∈ NrmMod → 𝐷 ∈ (∞Met‘𝑋)) |
7 | 6 | anim1i 615 |
. . . . 5
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*)
→ (𝐷 ∈
(∞Met‘𝑋) ∧
𝑅 ∈
ℝ*)) |
8 | 7 | 3adant3 1131 |
. . . 4
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈
ℝ*)) |
9 | | simp3l 1200 |
. . . . 5
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝑃 ∈ 𝑋) |
10 | | ngpgrp 23755 |
. . . . . . . . 9
⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) |
11 | 1, 10 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ Grp) |
12 | 11 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐺 ∈ Grp) |
13 | | simp3 1137 |
. . . . . . 7
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
14 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) ↔ (𝐺 ∈ Grp ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) |
15 | 12, 13, 14 | sylanbrc 583 |
. . . . . 6
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
16 | | ngpocelbl.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
17 | 2, 16 | grpcl 18585 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑃 + 𝐴) ∈ 𝑋) |
18 | 15, 17 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑃 + 𝐴) ∈ 𝑋) |
19 | 9, 18 | jca 512 |
. . . 4
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑃 ∈ 𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)) |
20 | 8, 19 | jca 512 |
. . 3
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋))) |
21 | | elbl2 23543 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅)) |
22 | 20, 21 | syl 17 |
. 2
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅)) |
23 | 3 | oveqi 7288 |
. . . . . 6
⊢ (𝑃𝐷(𝑃 + 𝐴)) = (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴)) |
24 | | ovres 7438 |
. . . . . 6
⊢ ((𝑃 ∈ 𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴))) |
25 | 23, 24 | eqtrid 2790 |
. . . . 5
⊢ ((𝑃 ∈ 𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴))) |
26 | 19, 25 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴))) |
27 | 1 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) |
28 | | ngpocelbl.n |
. . . . . 6
⊢ 𝑁 = (norm‘𝐺) |
29 | | eqid 2738 |
. . . . . 6
⊢
(-g‘𝐺) = (-g‘𝐺) |
30 | | eqid 2738 |
. . . . . 6
⊢
(dist‘𝐺) =
(dist‘𝐺) |
31 | 28, 2, 29, 30 | ngpdsr 23761 |
. . . . 5
⊢ ((𝐺 ∈ NrmGrp ∧ 𝑃 ∈ 𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g‘𝐺)𝑃))) |
32 | 27, 9, 18, 31 | syl3anc 1370 |
. . . 4
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g‘𝐺)𝑃))) |
33 | | nlmlmod 23842 |
. . . . . . . . 9
⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ LMod) |
34 | | lmodabl 20170 |
. . . . . . . . 9
⊢ (𝐺 ∈ LMod → 𝐺 ∈ Abel) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ Abel) |
36 | 35 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐺 ∈ Abel) |
37 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐺 ∈ Abel ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) ↔ (𝐺 ∈ Abel ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) |
38 | 36, 13, 37 | sylanbrc 583 |
. . . . . 6
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐺 ∈ Abel ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
39 | 2, 16, 29 | ablpncan2 19417 |
. . . . . 6
⊢ ((𝐺 ∈ Abel ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑃 + 𝐴)(-g‘𝐺)𝑃) = 𝐴) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃 + 𝐴)(-g‘𝐺)𝑃) = 𝐴) |
41 | 40 | fveq2d 6778 |
. . . 4
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑁‘((𝑃 + 𝐴)(-g‘𝐺)𝑃)) = (𝑁‘𝐴)) |
42 | 26, 32, 41 | 3eqtrd 2782 |
. . 3
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑁‘𝐴)) |
43 | 42 | breq1d 5084 |
. 2
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃𝐷(𝑃 + 𝐴)) < 𝑅 ↔ (𝑁‘𝐴) < 𝑅)) |
44 | 22, 43 | bitrd 278 |
1
⊢ ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*
∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁‘𝐴) < 𝑅)) |