MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpocelbl Structured version   Visualization version   GIF version

Theorem ngpocelbl 24608
Description: Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007.) (Revised by AV, 14-Oct-2021.)
Hypotheses
Ref Expression
ngpocelbl.n 𝑁 = (norm‘𝐺)
ngpocelbl.x 𝑋 = (Base‘𝐺)
ngpocelbl.p + = (+g𝐺)
ngpocelbl.d 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
ngpocelbl ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))

Proof of Theorem ngpocelbl
StepHypRef Expression
1 nlmngp 24581 . . . . . . 7 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
2 ngpocelbl.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 ngpocelbl.d . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
42, 3ngpmet 24507 . . . . . . 7 (𝐺 ∈ NrmGrp → 𝐷 ∈ (Met‘𝑋))
5 metxmet 24238 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
61, 4, 53syl 18 . . . . . 6 (𝐺 ∈ NrmMod → 𝐷 ∈ (∞Met‘𝑋))
76anim1i 615 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
873adant3 1132 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
9 simp3l 1202 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝑃𝑋)
10 ngpgrp 24503 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
111, 10syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Grp)
12113ad2ant1 1133 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Grp)
13 simp3 1138 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋𝐴𝑋))
14 3anass 1094 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Grp ∧ (𝑃𝑋𝐴𝑋)))
1512, 13, 14sylanbrc 583 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋))
16 ngpocelbl.p . . . . . . 7 + = (+g𝐺)
172, 16grpcl 18838 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) → (𝑃 + 𝐴) ∈ 𝑋)
1815, 17syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃 + 𝐴) ∈ 𝑋)
199, 18jca 511 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋))
208, 19jca 511 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)))
21 elbl2 24294 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
2220, 21syl 17 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
233oveqi 7366 . . . . . 6 (𝑃𝐷(𝑃 + 𝐴)) = (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴))
24 ovres 7519 . . . . . 6 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2523, 24eqtrid 2776 . . . . 5 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2619, 25syl 17 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2713ad2ant1 1133 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ NrmGrp)
28 ngpocelbl.n . . . . . 6 𝑁 = (norm‘𝐺)
29 eqid 2729 . . . . . 6 (-g𝐺) = (-g𝐺)
30 eqid 2729 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
3128, 2, 29, 30ngpdsr 24509 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
3227, 9, 18, 31syl3anc 1373 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
33 nlmlmod 24582 . . . . . . . . 9 (𝐺 ∈ NrmMod → 𝐺 ∈ LMod)
34 lmodabl 20830 . . . . . . . . 9 (𝐺 ∈ LMod → 𝐺 ∈ Abel)
3533, 34syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Abel)
36353ad2ant1 1133 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Abel)
37 3anass 1094 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Abel ∧ (𝑃𝑋𝐴𝑋)))
3836, 13, 37sylanbrc 583 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋))
392, 16, 29ablpncan2 19712 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4038, 39syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4140fveq2d 6830 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)) = (𝑁𝐴))
4226, 32, 413eqtrd 2768 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑁𝐴))
4342breq1d 5105 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃𝐷(𝑃 + 𝐴)) < 𝑅 ↔ (𝑁𝐴) < 𝑅))
4422, 43bitrd 279 1 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  *cxr 11167   < clt 11168  Basecbs 17138  +gcplusg 17179  distcds 17188  Grpcgrp 18830  -gcsg 18832  Abelcabl 19678  LModclmod 20781  ∞Metcxmet 21264  Metcmet 21265  ballcbl 21266  normcnm 24480  NrmGrpcngp 24481  NrmModcnlm 24484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-topgen 17365  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-xms 24224  df-ms 24225  df-nm 24486  df-ngp 24487  df-nlm 24490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator