| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmhmplusg | Structured version Visualization version GIF version | ||
| Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmhmplusg.p | ⊢ + = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| nmhmplusg | ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmhmrcl1 24657 | . . 3 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | |
| 2 | nmhmrcl2 24658 | . . 3 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod)) |
| 4 | nmhmlmhm 24659 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 5 | nmhmlmhm 24659 | . . . 4 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 LMHom 𝑇)) | |
| 6 | nmhmplusg.p | . . . . 5 ⊢ + = (+g‘𝑇) | |
| 7 | 6 | lmhmplusg 20973 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
| 8 | 4, 5, 7 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
| 9 | nlmlmod 24588 | . . . . . 6 ⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ LMod) | |
| 10 | lmodabl 20837 | . . . . . 6 ⊢ (𝑇 ∈ LMod → 𝑇 ∈ Abel) | |
| 11 | 2, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ Abel) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝑇 ∈ Abel) |
| 13 | nmhmnghm 24660 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
| 15 | nmhmnghm 24660 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 NGHom 𝑇)) | |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐺 ∈ (𝑆 NGHom 𝑇)) |
| 17 | 6 | nghmplusg 24650 | . . . 4 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
| 18 | 12, 14, 16, 17 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
| 19 | 8, 18 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇))) |
| 20 | isnmhm 24656 | . 2 ⊢ ((𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)))) | |
| 21 | 3, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 +gcplusg 17156 Abelcabl 19688 LModclmod 20788 LMHom clmhm 20948 NrmModcnlm 24490 NGHom cnghm 24616 NMHom cnmhm 24617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ico 13246 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-topgen 17342 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-ghm 19120 df-cmn 19689 df-abl 19690 df-mgp 20054 df-ur 20095 df-ring 20148 df-lmod 20790 df-lmhm 20951 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-xms 24230 df-ms 24231 df-nm 24492 df-ngp 24493 df-nlm 24496 df-nmo 24618 df-nghm 24619 df-nmhm 24620 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |