| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmhmplusg | Structured version Visualization version GIF version | ||
| Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmhmplusg.p | ⊢ + = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| nmhmplusg | ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmhmrcl1 24611 | . . 3 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | |
| 2 | nmhmrcl2 24612 | . . 3 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod)) |
| 4 | nmhmlmhm 24613 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
| 5 | nmhmlmhm 24613 | . . . 4 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 LMHom 𝑇)) | |
| 6 | nmhmplusg.p | . . . . 5 ⊢ + = (+g‘𝑇) | |
| 7 | 6 | lmhmplusg 20927 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
| 8 | 4, 5, 7 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
| 9 | nlmlmod 24542 | . . . . . 6 ⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ LMod) | |
| 10 | lmodabl 20791 | . . . . . 6 ⊢ (𝑇 ∈ LMod → 𝑇 ∈ Abel) | |
| 11 | 2, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ Abel) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝑇 ∈ Abel) |
| 13 | nmhmnghm 24614 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
| 15 | nmhmnghm 24614 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 NGHom 𝑇)) | |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐺 ∈ (𝑆 NGHom 𝑇)) |
| 17 | 6 | nghmplusg 24604 | . . . 4 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
| 18 | 12, 14, 16, 17 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
| 19 | 8, 18 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇))) |
| 20 | isnmhm 24610 | . 2 ⊢ ((𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)))) | |
| 21 | 3, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 +gcplusg 17196 Abelcabl 19687 LModclmod 20742 LMHom clmhm 20902 NrmModcnlm 24444 NGHom cnghm 24570 NMHom cnmhm 24571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-topgen 17382 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-ghm 19121 df-cmn 19688 df-abl 19689 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20744 df-lmhm 20905 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-xms 24184 df-ms 24185 df-nm 24446 df-ngp 24447 df-nlm 24450 df-nmo 24572 df-nghm 24573 df-nmhm 24574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |