![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmhmplusg | Structured version Visualization version GIF version |
Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
nmhmplusg.p | ⊢ + = (+g‘𝑇) |
Ref | Expression |
---|---|
nmhmplusg | ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmhmrcl1 24485 | . . 3 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | |
2 | nmhmrcl2 24486 | . . 3 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod)) |
4 | nmhmlmhm 24487 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
5 | nmhmlmhm 24487 | . . . 4 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 LMHom 𝑇)) | |
6 | nmhmplusg.p | . . . . 5 ⊢ + = (+g‘𝑇) | |
7 | 6 | lmhmplusg 20800 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
8 | 4, 5, 7 | syl2an 595 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
9 | nlmlmod 24416 | . . . . . 6 ⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ LMod) | |
10 | lmodabl 20664 | . . . . . 6 ⊢ (𝑇 ∈ LMod → 𝑇 ∈ Abel) | |
11 | 2, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ Abel) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝑇 ∈ Abel) |
13 | nmhmnghm 24488 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
15 | nmhmnghm 24488 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 NGHom 𝑇)) | |
16 | 15 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐺 ∈ (𝑆 NGHom 𝑇)) |
17 | 6 | nghmplusg 24478 | . . . 4 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
18 | 12, 14, 16, 17 | syl3anc 1370 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
19 | 8, 18 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇))) |
20 | isnmhm 24484 | . 2 ⊢ ((𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)))) | |
21 | 3, 19, 20 | sylanbrc 582 | 1 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ‘cfv 6544 (class class class)co 7412 ∘f cof 7671 +gcplusg 17202 Abelcabl 19691 LModclmod 20615 LMHom clmhm 20775 NrmModcnlm 24310 NGHom cnghm 24444 NMHom cnmhm 24445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ico 13335 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-topgen 17394 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-ghm 19129 df-cmn 19692 df-abl 19693 df-mgp 20030 df-ur 20077 df-ring 20130 df-lmod 20617 df-lmhm 20778 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-xms 24047 df-ms 24048 df-nm 24312 df-ngp 24313 df-nlm 24316 df-nmo 24446 df-nghm 24447 df-nmhm 24448 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |