![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmhmplusg | Structured version Visualization version GIF version |
Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
nmhmplusg.p | ⊢ + = (+g‘𝑇) |
Ref | Expression |
---|---|
nmhmplusg | ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmhmrcl1 24783 | . . 3 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod) | |
2 | nmhmrcl2 24784 | . . 3 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod)) |
4 | nmhmlmhm 24785 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | |
5 | nmhmlmhm 24785 | . . . 4 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 LMHom 𝑇)) | |
6 | nmhmplusg.p | . . . . 5 ⊢ + = (+g‘𝑇) | |
7 | 6 | lmhmplusg 21060 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
8 | 4, 5, 7 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇)) |
9 | nlmlmod 24714 | . . . . . 6 ⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ LMod) | |
10 | lmodabl 20923 | . . . . . 6 ⊢ (𝑇 ∈ LMod → 𝑇 ∈ Abel) | |
11 | 2, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ Abel) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝑇 ∈ Abel) |
13 | nmhmnghm 24786 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐹 ∈ (𝑆 NGHom 𝑇)) |
15 | nmhmnghm 24786 | . . . . 5 ⊢ (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 NGHom 𝑇)) | |
16 | 15 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐺 ∈ (𝑆 NGHom 𝑇)) |
17 | 6 | nghmplusg 24776 | . . . 4 ⊢ ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
18 | 12, 14, 16, 17 | syl3anc 1370 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)) |
19 | 8, 18 | jca 511 | . 2 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇))) |
20 | isnmhm 24782 | . 2 ⊢ ((𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ ((𝐹 ∘f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 ∘f + 𝐺) ∈ (𝑆 NGHom 𝑇)))) | |
21 | 3, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹 ∘f + 𝐺) ∈ (𝑆 NMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 ∘f cof 7694 +gcplusg 17297 Abelcabl 19813 LModclmod 20874 LMHom clmhm 21035 NrmModcnlm 24608 NGHom cnghm 24742 NMHom cnmhm 24743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ico 13389 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-0g 17487 df-topgen 17489 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-ghm 19243 df-cmn 19814 df-abl 19815 df-mgp 20152 df-ur 20199 df-ring 20252 df-lmod 20876 df-lmhm 21038 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-xms 24345 df-ms 24346 df-nm 24610 df-ngp 24611 df-nlm 24614 df-nmo 24744 df-nghm 24745 df-nmhm 24746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |