MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmplusg Structured version   Visualization version   GIF version

Theorem nmhmplusg 24495
Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
nmhmplusg.p + = (+g𝑇)
Assertion
Ref Expression
nmhmplusg ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 NMHom 𝑇))

Proof of Theorem nmhmplusg
StepHypRef Expression
1 nmhmrcl1 24485 . . 3 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod)
2 nmhmrcl2 24486 . . 3 (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod)
31, 2anim12i 612 . 2 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod))
4 nmhmlmhm 24487 . . . 4 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
5 nmhmlmhm 24487 . . . 4 (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 LMHom 𝑇))
6 nmhmplusg.p . . . . 5 + = (+g𝑇)
76lmhmplusg 20800 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 LMHom 𝑇))
84, 5, 7syl2an 595 . . 3 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 LMHom 𝑇))
9 nlmlmod 24416 . . . . . 6 (𝑇 ∈ NrmMod → 𝑇 ∈ LMod)
10 lmodabl 20664 . . . . . 6 (𝑇 ∈ LMod → 𝑇 ∈ Abel)
112, 9, 103syl 18 . . . . 5 (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ Abel)
1211adantl 481 . . . 4 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝑇 ∈ Abel)
13 nmhmnghm 24488 . . . . 5 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 NGHom 𝑇))
1413adantr 480 . . . 4 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐹 ∈ (𝑆 NGHom 𝑇))
15 nmhmnghm 24488 . . . . 5 (𝐺 ∈ (𝑆 NMHom 𝑇) → 𝐺 ∈ (𝑆 NGHom 𝑇))
1615adantl 481 . . . 4 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → 𝐺 ∈ (𝑆 NGHom 𝑇))
176nghmplusg 24478 . . . 4 ((𝑇 ∈ Abel ∧ 𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 NGHom 𝑇))
1812, 14, 16, 17syl3anc 1370 . . 3 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 NGHom 𝑇))
198, 18jca 511 . 2 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → ((𝐹f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹f + 𝐺) ∈ (𝑆 NGHom 𝑇)))
20 isnmhm 24484 . 2 ((𝐹f + 𝐺) ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ ((𝐹f + 𝐺) ∈ (𝑆 LMHom 𝑇) ∧ (𝐹f + 𝐺) ∈ (𝑆 NGHom 𝑇))))
213, 19, 20sylanbrc 582 1 ((𝐹 ∈ (𝑆 NMHom 𝑇) ∧ 𝐺 ∈ (𝑆 NMHom 𝑇)) → (𝐹f + 𝐺) ∈ (𝑆 NMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cfv 6544  (class class class)co 7412  f cof 7671  +gcplusg 17202  Abelcabl 19691  LModclmod 20615   LMHom clmhm 20775  NrmModcnlm 24310   NGHom cnghm 24444   NMHom cnmhm 24445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ico 13335  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-0g 17392  df-topgen 17394  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-sbg 18861  df-ghm 19129  df-cmn 19692  df-abl 19693  df-mgp 20030  df-ur 20077  df-ring 20130  df-lmod 20617  df-lmhm 20778  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-xms 24047  df-ms 24048  df-nm 24312  df-ngp 24313  df-nlm 24316  df-nmo 24446  df-nghm 24447  df-nmhm 24448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator