MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmrcl1 Structured version   Visualization version   GIF version

Theorem nmhmrcl1 24768
Description: Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
nmhmrcl1 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod)

Proof of Theorem nmhmrcl1
StepHypRef Expression
1 isnmhm 24767 . . 3 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
21simplbi 497 . 2 (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod))
32simpld 494 1 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑆 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  (class class class)co 7431   LMHom clmhm 21018  NrmModcnlm 24593   NGHom cnghm 24727   NMHom cnmhm 24728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-nmhm 24731
This theorem is referenced by:  nmhmco  24777  nmhmplusg  24778
  Copyright terms: Public domain W3C validator