MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmrcl2 Structured version   Visualization version   GIF version

Theorem nmhmrcl2 24685
Description: Reverse closure for a normed module homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
nmhmrcl2 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod)

Proof of Theorem nmhmrcl2
StepHypRef Expression
1 isnmhm 24683 . . 3 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
21simplbi 496 . 2 (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod))
32simprd 494 1 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝑇 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  (class class class)co 7426   LMHom clmhm 20911  NrmModcnlm 24509   NGHom cnghm 24643   NMHom cnmhm 24644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-nmhm 24647
This theorem is referenced by:  nmhmco  24693  nmhmplusg  24694
  Copyright terms: Public domain W3C validator