MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmhmlmhm Structured version   Visualization version   GIF version

Theorem nmhmlmhm 24657
Description: A normed module homomorphism is a left module homomorphism (a linear operator). (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
nmhmlmhm (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))

Proof of Theorem nmhmlmhm
StepHypRef Expression
1 isnmhm 24654 . . 3 (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ ((𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod) ∧ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇))))
21simprbi 496 . 2 (𝐹 ∈ (𝑆 NMHom 𝑇) → (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝑆 NGHom 𝑇)))
32simpld 494 1 (𝐹 ∈ (𝑆 NMHom 𝑇) → 𝐹 ∈ (𝑆 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110  (class class class)co 7341   LMHom clmhm 20946  NrmModcnlm 24488   NGHom cnghm 24614   NMHom cnmhm 24615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-nmhm 24618
This theorem is referenced by:  nmhmco  24664  nmhmplusg  24665
  Copyright terms: Public domain W3C validator