![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onprc | Structured version Visualization version GIF version |
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7764), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
onprc | ⊢ ¬ On ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 7764 | . . 3 ⊢ Ord On | |
2 | ordirr 6383 | . . 3 ⊢ (Ord On → ¬ On ∈ On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ On ∈ On |
4 | elong 6373 | . . 3 ⊢ (On ∈ V → (On ∈ On ↔ Ord On)) | |
5 | 1, 4 | mpbiri 258 | . 2 ⊢ (On ∈ V → On ∈ On) |
6 | 3, 5 | mto 196 | 1 ⊢ ¬ On ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2107 Vcvv 3475 Ord word 6364 Oncon0 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 |
This theorem is referenced by: ordeleqon 7769 ssonprc 7775 sucon 7791 orduninsuc 7832 omelon2 7868 tfr2b 8396 tz7.48-3 8444 infensuc 9155 zorn2lem4 10494 noprc 27281 |
Copyright terms: Public domain | W3C validator |