| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onprc | Structured version Visualization version GIF version | ||
| Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7756), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| onprc | ⊢ ¬ On ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7756 | . . 3 ⊢ Ord On | |
| 2 | ordirr 6353 | . . 3 ⊢ (Ord On → ¬ On ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ On ∈ On |
| 4 | elong 6343 | . . 3 ⊢ (On ∈ V → (On ∈ On ↔ Ord On)) | |
| 5 | 1, 4 | mpbiri 258 | . 2 ⊢ (On ∈ V → On ∈ On) |
| 6 | 3, 5 | mto 197 | 1 ⊢ ¬ On ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3450 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: ordeleqon 7761 ssonprc 7766 sucon 7782 orduninsuc 7822 omelon2 7858 tfr2b 8367 tz7.48-3 8415 infensuc 9125 zorn2lem4 10459 noprc 27698 onvf1od 35101 |
| Copyright terms: Public domain | W3C validator |