Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onprc | Structured version Visualization version GIF version |
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7627), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
onprc | ⊢ ¬ On ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 7627 | . . 3 ⊢ Ord On | |
2 | ordirr 6284 | . . 3 ⊢ (Ord On → ¬ On ∈ On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ On ∈ On |
4 | elong 6274 | . . 3 ⊢ (On ∈ V → (On ∈ On ↔ Ord On)) | |
5 | 1, 4 | mpbiri 257 | . 2 ⊢ (On ∈ V → On ∈ On) |
6 | 3, 5 | mto 196 | 1 ⊢ ¬ On ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3432 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: ordeleqon 7632 ssonprc 7637 sucon 7653 orduninsuc 7690 omelon2 7725 tfr2b 8227 tz7.48-3 8275 infensuc 8942 zorn2lem4 10255 noprc 33974 |
Copyright terms: Public domain | W3C validator |