| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onprc | Structured version Visualization version GIF version | ||
| Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7710), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| onprc | ⊢ ¬ On ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7710 | . . 3 ⊢ Ord On | |
| 2 | ordirr 6324 | . . 3 ⊢ (Ord On → ¬ On ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ On ∈ On |
| 4 | elong 6314 | . . 3 ⊢ (On ∈ V → (On ∈ On ↔ Ord On)) | |
| 5 | 1, 4 | mpbiri 258 | . 2 ⊢ (On ∈ V → On ∈ On) |
| 6 | 3, 5 | mto 197 | 1 ⊢ ¬ On ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 Vcvv 3436 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: ordeleqon 7715 ssonprc 7720 sucon 7736 orduninsuc 7773 omelon2 7809 tfr2b 8315 tz7.48-3 8363 infensuc 9068 zorn2lem4 10387 noprc 27717 onvf1od 35139 |
| Copyright terms: Public domain | W3C validator |