| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onprc | Structured version Visualization version GIF version | ||
| Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7716), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| onprc | ⊢ ¬ On ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7716 | . . 3 ⊢ Ord On | |
| 2 | ordirr 6329 | . . 3 ⊢ (Ord On → ¬ On ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ On ∈ On |
| 4 | elong 6319 | . . 3 ⊢ (On ∈ V → (On ∈ On ↔ Ord On)) | |
| 5 | 1, 4 | mpbiri 258 | . 2 ⊢ (On ∈ V → On ∈ On) |
| 6 | 3, 5 | mto 197 | 1 ⊢ ¬ On ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2113 Vcvv 3437 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: ordeleqon 7721 ssonprc 7726 sucon 7742 orduninsuc 7779 omelon2 7815 tfr2b 8321 tz7.48-3 8369 infensuc 9075 zorn2lem4 10397 noprc 27720 onvf1od 35172 |
| Copyright terms: Public domain | W3C validator |