MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onprc Structured version   Visualization version   GIF version

Theorem onprc 7761
Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7760), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc ¬ On ∈ V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 7760 . . 3 Ord On
2 ordirr 6379 . . 3 (Ord On → ¬ On ∈ On)
31, 2ax-mp 5 . 2 ¬ On ∈ On
4 elong 6369 . . 3 (On ∈ V → (On ∈ On ↔ Ord On))
51, 4mpbiri 257 . 2 (On ∈ V → On ∈ On)
63, 5mto 196 1 ¬ On ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  Vcvv 3474  Ord word 6360  Oncon0 6361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365
This theorem is referenced by:  ordeleqon  7765  ssonprc  7771  sucon  7787  orduninsuc  7828  omelon2  7864  tfr2b  8392  tz7.48-3  8440  infensuc  9151  zorn2lem4  10490  noprc  27270
  Copyright terms: Public domain W3C validator