MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabs Structured version   Visualization version   GIF version

Theorem oaabs 8615
Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oaabs (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)

Proof of Theorem oaabs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5281 . . . . . . . . 9 ((ω ⊆ 𝐵𝐵 ∈ On) → ω ∈ V)
21ex 412 . . . . . . . 8 (ω ⊆ 𝐵 → (𝐵 ∈ On → ω ∈ V))
3 omelon2 7858 . . . . . . . 8 (ω ∈ V → ω ∈ On)
42, 3syl6com 37 . . . . . . 7 (𝐵 ∈ On → (ω ⊆ 𝐵 → ω ∈ On))
54imp 406 . . . . . 6 ((𝐵 ∈ On ∧ ω ⊆ 𝐵) → ω ∈ On)
65adantll 714 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ω ∈ On)
7 simplr 768 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐵 ∈ On)
86, 7jca 511 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (ω ∈ On ∧ 𝐵 ∈ On))
9 oawordeu 8522 . . . 4 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
108, 9sylancom 588 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
11 reurex 3360 . . 3 (∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
1210, 11syl 17 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
13 nnon 7851 . . . . . . 7 (𝐴 ∈ ω → 𝐴 ∈ On)
1413ad3antrrr 730 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
156adantr 480 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ω ∈ On)
16 simpr 484 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
17 oaass 8528 . . . . . 6 ((𝐴 ∈ On ∧ ω ∈ On ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
1814, 15, 16, 17syl3anc 1373 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
19 simpll 766 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐴 ∈ ω)
20 oaabslem 8614 . . . . . . . 8 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)
216, 19, 20syl2anc 584 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o ω) = ω)
2221adantr 480 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o ω) = ω)
2322oveq1d 7405 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (ω +o 𝑥))
2418, 23eqtr3d 2767 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥))
25 oveq2 7398 . . . . 5 ((ω +o 𝑥) = 𝐵 → (𝐴 +o (ω +o 𝑥)) = (𝐴 +o 𝐵))
26 id 22 . . . . 5 ((ω +o 𝑥) = 𝐵 → (ω +o 𝑥) = 𝐵)
2725, 26eqeq12d 2746 . . . 4 ((ω +o 𝑥) = 𝐵 → ((𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥) ↔ (𝐴 +o 𝐵) = 𝐵))
2824, 27syl5ibcom 245 . . 3 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
2928rexlimdva 3135 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (∃𝑥 ∈ On (ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
3012, 29mpd 15 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  ∃!wreu 3354  Vcvv 3450  wss 3917  Oncon0 6335  (class class class)co 7390  ωcom 7845   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  omabs2  43328  naddwordnexlem4  43397
  Copyright terms: Public domain W3C validator