MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabs Structured version   Visualization version   GIF version

Theorem oaabs 8263
Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oaabs (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)

Proof of Theorem oaabs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5218 . . . . . . . . 9 ((ω ⊆ 𝐵𝐵 ∈ On) → ω ∈ V)
21ex 415 . . . . . . . 8 (ω ⊆ 𝐵 → (𝐵 ∈ On → ω ∈ V))
3 omelon2 7584 . . . . . . . 8 (ω ∈ V → ω ∈ On)
42, 3syl6com 37 . . . . . . 7 (𝐵 ∈ On → (ω ⊆ 𝐵 → ω ∈ On))
54imp 409 . . . . . 6 ((𝐵 ∈ On ∧ ω ⊆ 𝐵) → ω ∈ On)
65adantll 712 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ω ∈ On)
7 simplr 767 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐵 ∈ On)
86, 7jca 514 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (ω ∈ On ∧ 𝐵 ∈ On))
9 oawordeu 8173 . . . 4 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
108, 9sylancom 590 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
11 reurex 3430 . . 3 (∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
1210, 11syl 17 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
13 nnon 7578 . . . . . . 7 (𝐴 ∈ ω → 𝐴 ∈ On)
1413ad3antrrr 728 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
156adantr 483 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ω ∈ On)
16 simpr 487 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
17 oaass 8179 . . . . . 6 ((𝐴 ∈ On ∧ ω ∈ On ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
1814, 15, 16, 17syl3anc 1366 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
19 simpll 765 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐴 ∈ ω)
20 oaabslem 8262 . . . . . . . 8 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)
216, 19, 20syl2anc 586 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o ω) = ω)
2221adantr 483 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o ω) = ω)
2322oveq1d 7163 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (ω +o 𝑥))
2418, 23eqtr3d 2856 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥))
25 oveq2 7156 . . . . 5 ((ω +o 𝑥) = 𝐵 → (𝐴 +o (ω +o 𝑥)) = (𝐴 +o 𝐵))
26 id 22 . . . . 5 ((ω +o 𝑥) = 𝐵 → (ω +o 𝑥) = 𝐵)
2725, 26eqeq12d 2835 . . . 4 ((ω +o 𝑥) = 𝐵 → ((𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥) ↔ (𝐴 +o 𝐵) = 𝐵))
2824, 27syl5ibcom 247 . . 3 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
2928rexlimdva 3282 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (∃𝑥 ∈ On (ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
3012, 29mpd 15 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wrex 3137  ∃!wreu 3138  Vcvv 3493  wss 3934  Oncon0 6184  (class class class)co 7148  ωcom 7572   +o coa 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-oadd 8098
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator