MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabs Structured version   Visualization version   GIF version

Theorem oaabs 8558
Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oaabs (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)

Proof of Theorem oaabs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5259 . . . . . . . . 9 ((ω ⊆ 𝐵𝐵 ∈ On) → ω ∈ V)
21ex 412 . . . . . . . 8 (ω ⊆ 𝐵 → (𝐵 ∈ On → ω ∈ V))
3 omelon2 7804 . . . . . . . 8 (ω ∈ V → ω ∈ On)
42, 3syl6com 37 . . . . . . 7 (𝐵 ∈ On → (ω ⊆ 𝐵 → ω ∈ On))
54imp 406 . . . . . 6 ((𝐵 ∈ On ∧ ω ⊆ 𝐵) → ω ∈ On)
65adantll 714 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ω ∈ On)
7 simplr 768 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐵 ∈ On)
86, 7jca 511 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (ω ∈ On ∧ 𝐵 ∈ On))
9 oawordeu 8465 . . . 4 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
108, 9sylancom 588 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
11 reurex 3348 . . 3 (∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
1210, 11syl 17 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
13 nnon 7797 . . . . . . 7 (𝐴 ∈ ω → 𝐴 ∈ On)
1413ad3antrrr 730 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
156adantr 480 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ω ∈ On)
16 simpr 484 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
17 oaass 8471 . . . . . 6 ((𝐴 ∈ On ∧ ω ∈ On ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
1814, 15, 16, 17syl3anc 1373 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
19 simpll 766 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐴 ∈ ω)
20 oaabslem 8557 . . . . . . . 8 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)
216, 19, 20syl2anc 584 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o ω) = ω)
2221adantr 480 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o ω) = ω)
2322oveq1d 7356 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (ω +o 𝑥))
2418, 23eqtr3d 2767 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥))
25 oveq2 7349 . . . . 5 ((ω +o 𝑥) = 𝐵 → (𝐴 +o (ω +o 𝑥)) = (𝐴 +o 𝐵))
26 id 22 . . . . 5 ((ω +o 𝑥) = 𝐵 → (ω +o 𝑥) = 𝐵)
2725, 26eqeq12d 2746 . . . 4 ((ω +o 𝑥) = 𝐵 → ((𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥) ↔ (𝐴 +o 𝐵) = 𝐵))
2824, 27syl5ibcom 245 . . 3 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
2928rexlimdva 3131 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (∃𝑥 ∈ On (ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
3012, 29mpd 15 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wrex 3054  ∃!wreu 3342  Vcvv 3434  wss 3900  Oncon0 6302  (class class class)co 7341  ωcom 7791   +o coa 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-oadd 8384
This theorem is referenced by:  omabs2  43344  naddwordnexlem4  43413
  Copyright terms: Public domain W3C validator