MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabs Structured version   Visualization version   GIF version

Theorem oaabs 8685
Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oaabs (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)

Proof of Theorem oaabs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssexg 5329 . . . . . . . . 9 ((ω ⊆ 𝐵𝐵 ∈ On) → ω ∈ V)
21ex 412 . . . . . . . 8 (ω ⊆ 𝐵 → (𝐵 ∈ On → ω ∈ V))
3 omelon2 7900 . . . . . . . 8 (ω ∈ V → ω ∈ On)
42, 3syl6com 37 . . . . . . 7 (𝐵 ∈ On → (ω ⊆ 𝐵 → ω ∈ On))
54imp 406 . . . . . 6 ((𝐵 ∈ On ∧ ω ⊆ 𝐵) → ω ∈ On)
65adantll 714 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ω ∈ On)
7 simplr 769 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐵 ∈ On)
86, 7jca 511 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (ω ∈ On ∧ 𝐵 ∈ On))
9 oawordeu 8592 . . . 4 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
108, 9sylancom 588 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵)
11 reurex 3382 . . 3 (∃!𝑥 ∈ On (ω +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
1210, 11syl 17 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → ∃𝑥 ∈ On (ω +o 𝑥) = 𝐵)
13 nnon 7893 . . . . . . 7 (𝐴 ∈ ω → 𝐴 ∈ On)
1413ad3antrrr 730 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
156adantr 480 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ω ∈ On)
16 simpr 484 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
17 oaass 8598 . . . . . 6 ((𝐴 ∈ On ∧ ω ∈ On ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
1814, 15, 16, 17syl3anc 1370 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (𝐴 +o (ω +o 𝑥)))
19 simpll 767 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → 𝐴 ∈ ω)
20 oaabslem 8684 . . . . . . . 8 ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω)
216, 19, 20syl2anc 584 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o ω) = ω)
2221adantr 480 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o ω) = ω)
2322oveq1d 7446 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((𝐴 +o ω) +o 𝑥) = (ω +o 𝑥))
2418, 23eqtr3d 2777 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → (𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥))
25 oveq2 7439 . . . . 5 ((ω +o 𝑥) = 𝐵 → (𝐴 +o (ω +o 𝑥)) = (𝐴 +o 𝐵))
26 id 22 . . . . 5 ((ω +o 𝑥) = 𝐵 → (ω +o 𝑥) = 𝐵)
2725, 26eqeq12d 2751 . . . 4 ((ω +o 𝑥) = 𝐵 → ((𝐴 +o (ω +o 𝑥)) = (ω +o 𝑥) ↔ (𝐴 +o 𝐵) = 𝐵))
2824, 27syl5ibcom 245 . . 3 ((((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) ∧ 𝑥 ∈ On) → ((ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
2928rexlimdva 3153 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (∃𝑥 ∈ On (ω +o 𝑥) = 𝐵 → (𝐴 +o 𝐵) = 𝐵))
3012, 29mpd 15 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  ∃!wreu 3376  Vcvv 3478  wss 3963  Oncon0 6386  (class class class)co 7431  ωcom 7887   +o coa 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-oadd 8509
This theorem is referenced by:  omabs2  43322  naddwordnexlem4  43391
  Copyright terms: Public domain W3C validator