| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oninfcl2 | Structured version Visualization version GIF version | ||
| Description: The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| oninfcl2 | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onintunirab 43239 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) | |
| 2 | oninton 7815 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | |
| 3 | 1, 2 | eqeltrrd 2842 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 {crab 3436 ⊆ wss 3951 ∅c0 4333 ∪ cuni 4907 ∩ cint 4946 Oncon0 6384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-suc 6390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |