![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oninfunirab | Structured version Visualization version GIF version |
Description: The infimum of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 23-Jan-2025.) |
Ref | Expression |
---|---|
oninfunirab | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oninfint 43224 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = ∩ 𝐴) | |
2 | onintunirab 43215 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) | |
3 | 1, 2 | eqtrd 2774 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ≠ wne 2937 ∀wral 3058 {crab 3432 ⊆ wss 3962 ∅c0 4338 ∪ cuni 4911 ∩ cint 4950 E cep 5587 Oncon0 6385 infcinf 9478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-cnv 5696 df-ord 6388 df-on 6389 df-suc 6391 df-iota 6515 df-riota 7387 df-sup 9479 df-inf 9480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |