Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oninfunirab Structured version   Visualization version   GIF version

Theorem oninfunirab 43233
Description: The infimum of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
oninfunirab ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑥𝑦})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem oninfunirab
StepHypRef Expression
1 oninfint 43232 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = 𝐴)
2 onintunirab 43223 . 2 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑥𝑦})
31, 2eqtrd 2765 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2926  wral 3045  {crab 3408  wss 3917  c0 4299   cuni 4874   cint 4913   E cep 5540  Oncon0 6335  infcinf 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-cnv 5649  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-riota 7347  df-sup 9400  df-inf 9401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator