MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom2 Structured version   Visualization version   GIF version

Theorem brsdom2 8684
Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.)
Hypotheses
Ref Expression
brsdom2.1 𝐴 ∈ V
brsdom2.2 𝐵 ∈ V
Assertion
Ref Expression
brsdom2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))

Proof of Theorem brsdom2
StepHypRef Expression
1 dfsdom2 8683 . . 3 ≺ = ( ≼ ∖ ≼ )
21eleq2i 2824 . 2 (⟨𝐴, 𝐵⟩ ∈ ≺ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ))
3 df-br 5028 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
4 df-br 5028 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
5 df-br 5028 . . . . . 6 (𝐵𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ ≼ )
6 brsdom2.1 . . . . . . 7 𝐴 ∈ V
7 brsdom2.2 . . . . . . 7 𝐵 ∈ V
86, 7opelcnv 5718 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐵, 𝐴⟩ ∈ ≼ )
95, 8bitr4i 281 . . . . 5 (𝐵𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
109notbii 323 . . . 4 𝐵𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ )
114, 10anbi12i 630 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ ))
12 eldif 3851 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ ))
1311, 12bitr4i 281 . 2 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ))
142, 3, 133bitr4i 306 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wcel 2113  Vcvv 3397  cdif 3838  cop 4519   class class class wbr 5027  ccnv 5518  cdom 8546  csdm 8547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator