| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsdom2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.) |
| Ref | Expression |
|---|---|
| brsdom2.1 | ⊢ 𝐴 ∈ V |
| brsdom2.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brsdom2 | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsdom2 9013 | . . 3 ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
| 3 | df-br 5090 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
| 4 | df-br 5090 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
| 5 | df-br 5090 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) | |
| 6 | brsdom2.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 7 | brsdom2.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 8 | 6, 7 | opelcnv 5820 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ◡ ≼ ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) |
| 9 | 5, 8 | bitr4i 278 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
| 10 | 9 | notbii 320 | . . . 4 ⊢ (¬ 𝐵 ≼ 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
| 11 | 4, 10 | anbi12i 628 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) |
| 12 | eldif 3907 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) | |
| 13 | 11, 12 | bitr4i 278 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
| 14 | 2, 3, 13 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 〈cop 4579 class class class wbr 5089 ◡ccnv 5613 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |