| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsdom2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.) |
| Ref | Expression |
|---|---|
| brsdom2.1 | ⊢ 𝐴 ∈ V |
| brsdom2.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brsdom2 | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsdom2 9070 | . . 3 ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
| 3 | df-br 5111 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
| 4 | df-br 5111 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
| 5 | df-br 5111 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) | |
| 6 | brsdom2.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 7 | brsdom2.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 8 | 6, 7 | opelcnv 5848 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ◡ ≼ ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) |
| 9 | 5, 8 | bitr4i 278 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
| 10 | 9 | notbii 320 | . . . 4 ⊢ (¬ 𝐵 ≼ 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
| 11 | 4, 10 | anbi12i 628 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) |
| 12 | eldif 3927 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) | |
| 13 | 11, 12 | bitr4i 278 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
| 14 | 2, 3, 13 | 3bitr4i 303 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 〈cop 4598 class class class wbr 5110 ◡ccnv 5640 ≼ cdom 8919 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |