MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom2 Structured version   Visualization version   GIF version

Theorem brsdom2 8918
Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.)
Hypotheses
Ref Expression
brsdom2.1 𝐴 ∈ V
brsdom2.2 𝐵 ∈ V
Assertion
Ref Expression
brsdom2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))

Proof of Theorem brsdom2
StepHypRef Expression
1 dfsdom2 8917 . . 3 ≺ = ( ≼ ∖ ≼ )
21eleq2i 2828 . 2 (⟨𝐴, 𝐵⟩ ∈ ≺ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ))
3 df-br 5082 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
4 df-br 5082 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
5 df-br 5082 . . . . . 6 (𝐵𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ ≼ )
6 brsdom2.1 . . . . . . 7 𝐴 ∈ V
7 brsdom2.2 . . . . . . 7 𝐵 ∈ V
86, 7opelcnv 5799 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐵, 𝐴⟩ ∈ ≼ )
95, 8bitr4i 279 . . . . 5 (𝐵𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
109notbii 321 . . . 4 𝐵𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ )
114, 10anbi12i 628 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ ))
12 eldif 3902 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ ))
1311, 12bitr4i 279 . 2 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ))
142, 3, 133bitr4i 304 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wcel 2104  Vcvv 3437  cdif 3889  cop 4571   class class class wbr 5081  ccnv 5595  cdom 8758  csdm 8759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5496  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-er 8525  df-en 8761  df-dom 8762  df-sdom 8763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator