Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brsdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.) |
Ref | Expression |
---|---|
brsdom2.1 | ⊢ 𝐴 ∈ V |
brsdom2.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brsdom2 | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsdom2 8683 | . . 3 ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) | |
2 | 1 | eleq2i 2824 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
3 | df-br 5028 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
4 | df-br 5028 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
5 | df-br 5028 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) | |
6 | brsdom2.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
7 | brsdom2.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
8 | 6, 7 | opelcnv 5718 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ◡ ≼ ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) |
9 | 5, 8 | bitr4i 281 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
10 | 9 | notbii 323 | . . . 4 ⊢ (¬ 𝐵 ≼ 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
11 | 4, 10 | anbi12i 630 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) |
12 | eldif 3851 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) | |
13 | 11, 12 | bitr4i 281 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
14 | 2, 3, 13 | 3bitr4i 306 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∈ wcel 2113 Vcvv 3397 ∖ cdif 3838 〈cop 4519 class class class wbr 5027 ◡ccnv 5518 ≼ cdom 8546 ≺ csdm 8547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |