![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brsdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.) |
Ref | Expression |
---|---|
brsdom2.1 | ⊢ 𝐴 ∈ V |
brsdom2.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brsdom2 | ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsdom2 8490 | . . 3 ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) | |
2 | 1 | eleq2i 2873 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≺ ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
3 | df-br 4965 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
4 | df-br 4965 | . . . 4 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
5 | df-br 4965 | . . . . . 6 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) | |
6 | brsdom2.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
7 | brsdom2.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
8 | 6, 7 | opelcnv 5641 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ◡ ≼ ↔ 〈𝐵, 𝐴〉 ∈ ≼ ) |
9 | 5, 8 | bitr4i 279 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
10 | 9 | notbii 321 | . . . 4 ⊢ (¬ 𝐵 ≼ 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ ) |
11 | 4, 10 | anbi12i 626 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) |
12 | eldif 3871 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ ) ↔ (〈𝐴, 𝐵〉 ∈ ≼ ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ ≼ )) | |
13 | 11, 12 | bitr4i 279 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴) ↔ 〈𝐴, 𝐵〉 ∈ ( ≼ ∖ ◡ ≼ )) |
14 | 2, 3, 13 | 3bitr4i 304 | 1 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∧ wa 396 ∈ wcel 2080 Vcvv 3436 ∖ cdif 3858 〈cop 4480 class class class wbr 4964 ◡ccnv 5445 ≼ cdom 8358 ≺ csdm 8359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-br 4965 df-opab 5027 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |