MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsdom2 Structured version   Visualization version   GIF version

Theorem brsdom2 9100
Description: Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.)
Hypotheses
Ref Expression
brsdom2.1 𝐴 ∈ V
brsdom2.2 𝐵 ∈ V
Assertion
Ref Expression
brsdom2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))

Proof of Theorem brsdom2
StepHypRef Expression
1 dfsdom2 9099 . . 3 ≺ = ( ≼ ∖ ≼ )
21eleq2i 2824 . 2 (⟨𝐴, 𝐵⟩ ∈ ≺ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ))
3 df-br 5149 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
4 df-br 5149 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
5 df-br 5149 . . . . . 6 (𝐵𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ ≼ )
6 brsdom2.1 . . . . . . 7 𝐴 ∈ V
7 brsdom2.2 . . . . . . 7 𝐵 ∈ V
86, 7opelcnv 5881 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐵, 𝐴⟩ ∈ ≼ )
95, 8bitr4i 278 . . . . 5 (𝐵𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
109notbii 320 . . . 4 𝐵𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ )
114, 10anbi12i 626 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ ))
12 eldif 3958 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≼ ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ≼ ))
1311, 12bitr4i 278 . 2 ((𝐴𝐵 ∧ ¬ 𝐵𝐴) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≼ ∖ ≼ ))
142, 3, 133bitr4i 303 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wcel 2105  Vcvv 3473  cdif 3945  cop 4634   class class class wbr 5148  ccnv 5675  cdom 8940  csdm 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator