MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvf1olem Structured version   Visualization version   GIF version

Theorem cnvf1olem 8040
Description: Lemma for cnvf1o 8041. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
cnvf1olem ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))

Proof of Theorem cnvf1olem
StepHypRef Expression
1 simprr 772 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = {𝐵})
2 1st2nd 7971 . . . . . . . . 9 ((Rel 𝐴𝐵𝐴) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
32adantrr 717 . . . . . . . 8 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
43sneqd 4585 . . . . . . 7 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
54cnveqd 5814 . . . . . 6 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
65unieqd 4869 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐵} = {⟨(1st𝐵), (2nd𝐵)⟩})
71, 6eqtrd 2766 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = {⟨(1st𝐵), (2nd𝐵)⟩})
8 opswap 6176 . . . 4 {⟨(1st𝐵), (2nd𝐵)⟩} = ⟨(2nd𝐵), (1st𝐵)⟩
97, 8eqtrdi 2782 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶 = ⟨(2nd𝐵), (1st𝐵)⟩)
10 simprl 770 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵𝐴)
113, 10eqeltrrd 2832 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴)
12 fvex 6835 . . . . 5 (2nd𝐵) ∈ V
13 fvex 6835 . . . . 5 (1st𝐵) ∈ V
1412, 13opelcnv 5820 . . . 4 (⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴 ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ 𝐴)
1511, 14sylibr 234 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → ⟨(2nd𝐵), (1st𝐵)⟩ ∈ 𝐴)
169, 15eqeltrd 2831 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐶𝐴)
17 opswap 6176 . . . 4 {⟨(2nd𝐵), (1st𝐵)⟩} = ⟨(1st𝐵), (2nd𝐵)⟩
1817eqcomi 2740 . . 3 ⟨(1st𝐵), (2nd𝐵)⟩ = {⟨(2nd𝐵), (1st𝐵)⟩}
199sneqd 4585 . . . . 5 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2019cnveqd 5814 . . . 4 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2120unieqd 4869 . . 3 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → {𝐶} = {⟨(2nd𝐵), (1st𝐵)⟩})
2218, 3, 213eqtr4a 2792 . 2 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → 𝐵 = {𝐶})
2316, 22jca 511 1 ((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4573  cop 4579   cuni 4856  ccnv 5613  Rel wrel 5619  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  cnvf1o  8041  fcnvgreu  32655  gsumhashmul  33041
  Copyright terms: Public domain W3C validator