Proof of Theorem cnvf1olem
Step | Hyp | Ref
| Expression |
1 | | simprr 769 |
. . . . 5
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐶 = ∪ ◡{𝐵}) |
2 | | 1st2nd 7853 |
. . . . . . . . 9
⊢ ((Rel
𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
3 | 2 | adantrr 713 |
. . . . . . . 8
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
4 | 3 | sneqd 4570 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → {𝐵} = {〈(1st ‘𝐵), (2nd ‘𝐵)〉}) |
5 | 4 | cnveqd 5773 |
. . . . . 6
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ◡{𝐵} = ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉}) |
6 | 5 | unieqd 4850 |
. . . . 5
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ∪
◡{𝐵} = ∪ ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉}) |
7 | 1, 6 | eqtrd 2778 |
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐶 = ∪ ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉}) |
8 | | opswap 6121 |
. . . 4
⊢ ∪ ◡{〈(1st ‘𝐵), (2nd ‘𝐵)〉} = 〈(2nd
‘𝐵), (1st
‘𝐵)〉 |
9 | 7, 8 | eqtrdi 2795 |
. . 3
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐶 = 〈(2nd ‘𝐵), (1st ‘𝐵)〉) |
10 | | simprl 767 |
. . . . 5
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐵 ∈ 𝐴) |
11 | 3, 10 | eqeltrrd 2840 |
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 〈(1st
‘𝐵), (2nd
‘𝐵)〉 ∈
𝐴) |
12 | | fvex 6769 |
. . . . 5
⊢
(2nd ‘𝐵) ∈ V |
13 | | fvex 6769 |
. . . . 5
⊢
(1st ‘𝐵) ∈ V |
14 | 12, 13 | opelcnv 5779 |
. . . 4
⊢
(〈(2nd ‘𝐵), (1st ‘𝐵)〉 ∈ ◡𝐴 ↔ 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ 𝐴) |
15 | 11, 14 | sylibr 233 |
. . 3
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 〈(2nd
‘𝐵), (1st
‘𝐵)〉 ∈
◡𝐴) |
16 | 9, 15 | eqeltrd 2839 |
. 2
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐶 ∈ ◡𝐴) |
17 | | opswap 6121 |
. . . 4
⊢ ∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉} = 〈(1st
‘𝐵), (2nd
‘𝐵)〉 |
18 | 17 | eqcomi 2747 |
. . 3
⊢
〈(1st ‘𝐵), (2nd ‘𝐵)〉 = ∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉} |
19 | 9 | sneqd 4570 |
. . . . 5
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → {𝐶} = {〈(2nd ‘𝐵), (1st ‘𝐵)〉}) |
20 | 19 | cnveqd 5773 |
. . . 4
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ◡{𝐶} = ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉}) |
21 | 20 | unieqd 4850 |
. . 3
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → ∪
◡{𝐶} = ∪ ◡{〈(2nd ‘𝐵), (1st ‘𝐵)〉}) |
22 | 18, 3, 21 | 3eqtr4a 2805 |
. 2
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → 𝐵 = ∪ ◡{𝐶}) |
23 | 16, 22 | jca 511 |
1
⊢ ((Rel
𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → (𝐶 ∈ ◡𝐴 ∧ 𝐵 = ∪ ◡{𝐶})) |