MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauseqlcld Structured version   Visualization version   GIF version

Theorem hauseqlcld 23533
Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
hauseqlcld.k (𝜑𝐾 ∈ Haus)
hauseqlcld.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqlcld.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
hauseqlcld (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))

Proof of Theorem hauseqlcld
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauseqlcld.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2729 . . . . . . . . . . 11 𝐽 = 𝐽
3 eqid 2729 . . . . . . . . . . 11 𝐾 = 𝐾
42, 3cnf 23133 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
65ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑏 𝐽) → (𝐹𝑏) ∈ 𝐾)
76biantrurd 532 . . . . . . 7 ((𝜑𝑏 𝐽) → (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )))
8 fvex 6871 . . . . . . . . 9 (𝐺𝑏) ∈ V
98ideq 5816 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ (𝐹𝑏) = (𝐺𝑏))
10 df-br 5108 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
119, 10bitr3i 277 . . . . . . 7 ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
128opelresi 5958 . . . . . . 7 (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾) ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ))
137, 11, 123bitr4g 314 . . . . . 6 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
14 fveq2 6858 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
15 fveq2 6858 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐺𝑎) = (𝐺𝑏))
1614, 15opeq12d 4845 . . . . . . . . 9 (𝑎 = 𝑏 → ⟨(𝐹𝑎), (𝐺𝑎)⟩ = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
17 eqid 2729 . . . . . . . . 9 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) = (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)
18 opex 5424 . . . . . . . . 9 ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ V
1916, 17, 18fvmpt 6968 . . . . . . . 8 (𝑏 𝐽 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2019adantl 481 . . . . . . 7 ((𝜑𝑏 𝐽) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2120eleq1d 2813 . . . . . 6 ((𝜑𝑏 𝐽) → (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
2213, 21bitr4d 282 . . . . 5 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾)))
2322pm5.32da 579 . . . 4 (𝜑 → ((𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
245ffnd 6689 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
25 hauseqlcld.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
262, 3cnf 23133 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
2725, 26syl 17 . . . . . . . 8 (𝜑𝐺: 𝐽 𝐾)
2827ffnd 6689 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
29 fndmin 7017 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3024, 28, 29syl2anc 584 . . . . . 6 (𝜑 → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3130eleq2d 2814 . . . . 5 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)}))
32 rabid 3427 . . . . 5 (𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)} ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)))
3331, 32bitrdi 287 . . . 4 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏))))
34 opex 5424 . . . . . 6 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3534, 17fnmpti 6661 . . . . 5 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽
36 elpreima 7030 . . . . 5 ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3735, 36mp1i 13 . . . 4 (𝜑 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3823, 33, 373bitr4d 311 . . 3 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾))))
3938eqrdv 2727 . 2 (𝜑 → dom (𝐹𝐺) = ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)))
402, 17txcnmpt 23511 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
411, 25, 40syl2anc 584 . . 3 (𝜑 → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
42 hauseqlcld.k . . . 4 (𝜑𝐾 ∈ Haus)
433hausdiag 23532 . . . . 5 (𝐾 ∈ Haus ↔ (𝐾 ∈ Top ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))))
4443simprbi 496 . . . 4 (𝐾 ∈ Haus → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
4542, 44syl 17 . . 3 (𝜑 → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
46 cnclima 23155 . . 3 (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)) ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4741, 45, 46syl2anc 584 . 2 (𝜑 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4839, 47eqeltrd 2828 1 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  cin 3913  cop 4595   cuni 4871   class class class wbr 5107  cmpt 5188   I cid 5532  ccnv 5637  dom cdm 5638  cres 5640  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Topctop 22780  Clsdccld 22903   Cn ccn 23111  Hauscha 23195   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cn 23114  df-haus 23202  df-tx 23449
This theorem is referenced by:  hauseqcn  33888  hausgraph  43194
  Copyright terms: Public domain W3C validator