MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauseqlcld Structured version   Visualization version   GIF version

Theorem hauseqlcld 22255
Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
hauseqlcld.k (𝜑𝐾 ∈ Haus)
hauseqlcld.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqlcld.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
hauseqlcld (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))

Proof of Theorem hauseqlcld
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauseqlcld.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2801 . . . . . . . . . . 11 𝐽 = 𝐽
3 eqid 2801 . . . . . . . . . . 11 𝐾 = 𝐾
42, 3cnf 21855 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
65ffvelrnda 6832 . . . . . . . 8 ((𝜑𝑏 𝐽) → (𝐹𝑏) ∈ 𝐾)
76biantrurd 536 . . . . . . 7 ((𝜑𝑏 𝐽) → (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )))
8 fvex 6662 . . . . . . . . 9 (𝐺𝑏) ∈ V
98ideq 5691 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ (𝐹𝑏) = (𝐺𝑏))
10 df-br 5034 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
119, 10bitr3i 280 . . . . . . 7 ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
128opelresi 5830 . . . . . . 7 (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾) ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ))
137, 11, 123bitr4g 317 . . . . . 6 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
14 fveq2 6649 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
15 fveq2 6649 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐺𝑎) = (𝐺𝑏))
1614, 15opeq12d 4776 . . . . . . . . 9 (𝑎 = 𝑏 → ⟨(𝐹𝑎), (𝐺𝑎)⟩ = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
17 eqid 2801 . . . . . . . . 9 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) = (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)
18 opex 5324 . . . . . . . . 9 ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ V
1916, 17, 18fvmpt 6749 . . . . . . . 8 (𝑏 𝐽 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2019adantl 485 . . . . . . 7 ((𝜑𝑏 𝐽) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2120eleq1d 2877 . . . . . 6 ((𝜑𝑏 𝐽) → (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
2213, 21bitr4d 285 . . . . 5 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾)))
2322pm5.32da 582 . . . 4 (𝜑 → ((𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
245ffnd 6492 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
25 hauseqlcld.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
262, 3cnf 21855 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
2725, 26syl 17 . . . . . . . 8 (𝜑𝐺: 𝐽 𝐾)
2827ffnd 6492 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
29 fndmin 6796 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3024, 28, 29syl2anc 587 . . . . . 6 (𝜑 → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3130eleq2d 2878 . . . . 5 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)}))
32 rabid 3334 . . . . 5 (𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)} ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)))
3331, 32syl6bb 290 . . . 4 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏))))
34 opex 5324 . . . . . 6 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3534, 17fnmpti 6467 . . . . 5 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽
36 elpreima 6809 . . . . 5 ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3735, 36mp1i 13 . . . 4 (𝜑 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3823, 33, 373bitr4d 314 . . 3 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾))))
3938eqrdv 2799 . 2 (𝜑 → dom (𝐹𝐺) = ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)))
402, 17txcnmpt 22233 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
411, 25, 40syl2anc 587 . . 3 (𝜑 → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
42 hauseqlcld.k . . . 4 (𝜑𝐾 ∈ Haus)
433hausdiag 22254 . . . . 5 (𝐾 ∈ Haus ↔ (𝐾 ∈ Top ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))))
4443simprbi 500 . . . 4 (𝐾 ∈ Haus → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
4542, 44syl 17 . . 3 (𝜑 → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
46 cnclima 21877 . . 3 (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)) ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4741, 45, 46syl2anc 587 . 2 (𝜑 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4839, 47eqeltrd 2893 1 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  {crab 3113  cin 3883  cop 4534   cuni 4803   class class class wbr 5033  cmpt 5113   I cid 5427  ccnv 5522  dom cdm 5523  cres 5525  cima 5526   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  Topctop 21502  Clsdccld 21625   Cn ccn 21833  Hauscha 21917   ×t ctx 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-map 8395  df-topgen 16713  df-top 21503  df-topon 21520  df-bases 21555  df-cld 21628  df-cn 21836  df-haus 21924  df-tx 22171
This theorem is referenced by:  hauseqcn  31255  hausgraph  40153
  Copyright terms: Public domain W3C validator