Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauseqlcld Structured version   Visualization version   GIF version

Theorem hauseqlcld 22255
 Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
hauseqlcld.k (𝜑𝐾 ∈ Haus)
hauseqlcld.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqlcld.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
hauseqlcld (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))

Proof of Theorem hauseqlcld
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauseqlcld.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2801 . . . . . . . . . . 11 𝐽 = 𝐽
3 eqid 2801 . . . . . . . . . . 11 𝐾 = 𝐾
42, 3cnf 21855 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
65ffvelrnda 6832 . . . . . . . 8 ((𝜑𝑏 𝐽) → (𝐹𝑏) ∈ 𝐾)
76biantrurd 536 . . . . . . 7 ((𝜑𝑏 𝐽) → (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )))
8 fvex 6662 . . . . . . . . 9 (𝐺𝑏) ∈ V
98ideq 5691 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ (𝐹𝑏) = (𝐺𝑏))
10 df-br 5034 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
119, 10bitr3i 280 . . . . . . 7 ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
128opelresi 5830 . . . . . . 7 (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾) ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ))
137, 11, 123bitr4g 317 . . . . . 6 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
14 fveq2 6649 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
15 fveq2 6649 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐺𝑎) = (𝐺𝑏))
1614, 15opeq12d 4776 . . . . . . . . 9 (𝑎 = 𝑏 → ⟨(𝐹𝑎), (𝐺𝑎)⟩ = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
17 eqid 2801 . . . . . . . . 9 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) = (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)
18 opex 5324 . . . . . . . . 9 ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ V
1916, 17, 18fvmpt 6749 . . . . . . . 8 (𝑏 𝐽 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2019adantl 485 . . . . . . 7 ((𝜑𝑏 𝐽) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2120eleq1d 2877 . . . . . 6 ((𝜑𝑏 𝐽) → (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
2213, 21bitr4d 285 . . . . 5 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾)))
2322pm5.32da 582 . . . 4 (𝜑 → ((𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
245ffnd 6492 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
25 hauseqlcld.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
262, 3cnf 21855 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
2725, 26syl 17 . . . . . . . 8 (𝜑𝐺: 𝐽 𝐾)
2827ffnd 6492 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
29 fndmin 6796 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3024, 28, 29syl2anc 587 . . . . . 6 (𝜑 → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3130eleq2d 2878 . . . . 5 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)}))
32 rabid 3334 . . . . 5 (𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)} ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)))
3331, 32syl6bb 290 . . . 4 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏))))
34 opex 5324 . . . . . 6 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3534, 17fnmpti 6467 . . . . 5 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽
36 elpreima 6809 . . . . 5 ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3735, 36mp1i 13 . . . 4 (𝜑 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3823, 33, 373bitr4d 314 . . 3 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾))))
3938eqrdv 2799 . 2 (𝜑 → dom (𝐹𝐺) = ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)))
402, 17txcnmpt 22233 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
411, 25, 40syl2anc 587 . . 3 (𝜑 → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
42 hauseqlcld.k . . . 4 (𝜑𝐾 ∈ Haus)
433hausdiag 22254 . . . . 5 (𝐾 ∈ Haus ↔ (𝐾 ∈ Top ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))))
4443simprbi 500 . . . 4 (𝐾 ∈ Haus → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
4542, 44syl 17 . . 3 (𝜑 → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
46 cnclima 21877 . . 3 (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)) ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4741, 45, 46syl2anc 587 . 2 (𝜑 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4839, 47eqeltrd 2893 1 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  {crab 3113   ∩ cin 3883  ⟨cop 4534  ∪ cuni 4803   class class class wbr 5033   ↦ cmpt 5113   I cid 5427  ◡ccnv 5522  dom cdm 5523   ↾ cres 5525   “ cima 5526   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  Topctop 21502  Clsdccld 21625   Cn ccn 21833  Hauscha 21917   ×t ctx 22169 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-map 8395  df-topgen 16713  df-top 21503  df-topon 21520  df-bases 21555  df-cld 21628  df-cn 21836  df-haus 21924  df-tx 22171 This theorem is referenced by:  hauseqcn  31255  hausgraph  40153
 Copyright terms: Public domain W3C validator