MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauseqlcld Structured version   Visualization version   GIF version

Theorem hauseqlcld 23561
Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
hauseqlcld.k (𝜑𝐾 ∈ Haus)
hauseqlcld.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqlcld.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
hauseqlcld (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))

Proof of Theorem hauseqlcld
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauseqlcld.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 eqid 2731 . . . . . . . . . . 11 𝐽 = 𝐽
3 eqid 2731 . . . . . . . . . . 11 𝐾 = 𝐾
42, 3cnf 23161 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
51, 4syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
65ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑏 𝐽) → (𝐹𝑏) ∈ 𝐾)
76biantrurd 532 . . . . . . 7 ((𝜑𝑏 𝐽) → (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )))
8 fvex 6835 . . . . . . . . 9 (𝐺𝑏) ∈ V
98ideq 5791 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ (𝐹𝑏) = (𝐺𝑏))
10 df-br 5090 . . . . . . . 8 ((𝐹𝑏) I (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
119, 10bitr3i 277 . . . . . . 7 ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I )
128opelresi 5935 . . . . . . 7 (⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾) ↔ ((𝐹𝑏) ∈ 𝐾 ∧ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ I ))
137, 11, 123bitr4g 314 . . . . . 6 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
14 fveq2 6822 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
15 fveq2 6822 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐺𝑎) = (𝐺𝑏))
1614, 15opeq12d 4830 . . . . . . . . 9 (𝑎 = 𝑏 → ⟨(𝐹𝑎), (𝐺𝑎)⟩ = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
17 eqid 2731 . . . . . . . . 9 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) = (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)
18 opex 5402 . . . . . . . . 9 ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ V
1916, 17, 18fvmpt 6929 . . . . . . . 8 (𝑏 𝐽 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2019adantl 481 . . . . . . 7 ((𝜑𝑏 𝐽) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) = ⟨(𝐹𝑏), (𝐺𝑏)⟩)
2120eleq1d 2816 . . . . . 6 ((𝜑𝑏 𝐽) → (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾) ↔ ⟨(𝐹𝑏), (𝐺𝑏)⟩ ∈ ( I ↾ 𝐾)))
2213, 21bitr4d 282 . . . . 5 ((𝜑𝑏 𝐽) → ((𝐹𝑏) = (𝐺𝑏) ↔ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾)))
2322pm5.32da 579 . . . 4 (𝜑 → ((𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
245ffnd 6652 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
25 hauseqlcld.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
262, 3cnf 23161 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
2725, 26syl 17 . . . . . . . 8 (𝜑𝐺: 𝐽 𝐾)
2827ffnd 6652 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
29 fndmin 6978 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3024, 28, 29syl2anc 584 . . . . . 6 (𝜑 → dom (𝐹𝐺) = {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)})
3130eleq2d 2817 . . . . 5 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)}))
32 rabid 3416 . . . . 5 (𝑏 ∈ {𝑏 𝐽 ∣ (𝐹𝑏) = (𝐺𝑏)} ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏)))
3331, 32bitrdi 287 . . . 4 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ (𝑏 𝐽 ∧ (𝐹𝑏) = (𝐺𝑏))))
34 opex 5402 . . . . . 6 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3534, 17fnmpti 6624 . . . . 5 (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽
36 elpreima 6991 . . . . 5 ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) Fn 𝐽 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3735, 36mp1i 13 . . . 4 (𝜑 → (𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ↔ (𝑏 𝐽 ∧ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)‘𝑏) ∈ ( I ↾ 𝐾))))
3823, 33, 373bitr4d 311 . . 3 (𝜑 → (𝑏 ∈ dom (𝐹𝐺) ↔ 𝑏 ∈ ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾))))
3938eqrdv 2729 . 2 (𝜑 → dom (𝐹𝐺) = ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)))
402, 17txcnmpt 23539 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
411, 25, 40syl2anc 584 . . 3 (𝜑 → (𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)))
42 hauseqlcld.k . . . 4 (𝜑𝐾 ∈ Haus)
433hausdiag 23560 . . . . 5 (𝐾 ∈ Haus ↔ (𝐾 ∈ Top ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))))
4443simprbi 496 . . . 4 (𝐾 ∈ Haus → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
4542, 44syl 17 . . 3 (𝜑 → ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾)))
46 cnclima 23183 . . 3 (((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐾)) ∧ ( I ↾ 𝐾) ∈ (Clsd‘(𝐾 ×t 𝐾))) → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4741, 45, 46syl2anc 584 . 2 (𝜑 → ((𝑎 𝐽 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩) “ ( I ↾ 𝐾)) ∈ (Clsd‘𝐽))
4839, 47eqeltrd 2831 1 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cin 3896  cop 4579   cuni 4856   class class class wbr 5089  cmpt 5170   I cid 5508  ccnv 5613  dom cdm 5614  cres 5616  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Topctop 22808  Clsdccld 22931   Cn ccn 23139  Hauscha 23223   ×t ctx 23475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-cn 23142  df-haus 23230  df-tx 23477
This theorem is referenced by:  hauseqcn  33911  hausgraph  43297
  Copyright terms: Public domain W3C validator