MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem1 Structured version   Visualization version   GIF version

Theorem dprd2dlem1 19953
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (πœ‘ β†’ Rel 𝐴)
dprd2d.2 (πœ‘ β†’ 𝑆:𝐴⟢(SubGrpβ€˜πΊ))
dprd2d.3 (πœ‘ β†’ dom 𝐴 βŠ† 𝐼)
dprd2d.4 ((πœ‘ ∧ 𝑖 ∈ 𝐼) β†’ 𝐺dom DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (πœ‘ β†’ 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrClsβ€˜(SubGrpβ€˜πΊ))
dprd2d.6 (πœ‘ β†’ 𝐢 βŠ† 𝐼)
Assertion
Ref Expression
dprd2dlem1 (πœ‘ β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) = (𝐺 DProd (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐢,𝑖   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   πœ‘,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐢(𝑗)   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2dlem1
Dummy variables π‘˜ π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprd2d.5 . . . . . 6 (πœ‘ β†’ 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
2 dprdgrp 19917 . . . . . 6 (𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) β†’ 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (πœ‘ β†’ 𝐺 ∈ Grp)
4 eqid 2724 . . . . . 6 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
54subgacs 19078 . . . . 5 (𝐺 ∈ Grp β†’ (SubGrpβ€˜πΊ) ∈ (ACSβ€˜(Baseβ€˜πΊ)))
6 acsmre 17595 . . . . 5 ((SubGrpβ€˜πΊ) ∈ (ACSβ€˜(Baseβ€˜πΊ)) β†’ (SubGrpβ€˜πΊ) ∈ (Mooreβ€˜(Baseβ€˜πΊ)))
73, 5, 63syl 18 . . . 4 (πœ‘ β†’ (SubGrpβ€˜πΊ) ∈ (Mooreβ€˜(Baseβ€˜πΊ)))
8 dprd2d.k . . . 4 𝐾 = (mrClsβ€˜(SubGrpβ€˜πΊ))
9 dprd2d.2 . . . . . 6 (πœ‘ β†’ 𝑆:𝐴⟢(SubGrpβ€˜πΊ))
10 ffun 6710 . . . . . 6 (𝑆:𝐴⟢(SubGrpβ€˜πΊ) β†’ Fun 𝑆)
11 funiunfv 7239 . . . . . 6 (Fun 𝑆 β†’ βˆͺ π‘₯ ∈ (𝐴 β†Ύ 𝐢)(π‘†β€˜π‘₯) = βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)))
129, 10, 113syl 18 . . . . 5 (πœ‘ β†’ βˆͺ π‘₯ ∈ (𝐴 β†Ύ 𝐢)(π‘†β€˜π‘₯) = βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)))
13 resss 5996 . . . . . . . . . 10 (𝐴 β†Ύ 𝐢) βŠ† 𝐴
1413sseli 3970 . . . . . . . . 9 (π‘₯ ∈ (𝐴 β†Ύ 𝐢) β†’ π‘₯ ∈ 𝐴)
15 dprd2d.1 . . . . . . . . . 10 (πœ‘ β†’ Rel 𝐴)
16 dprd2d.3 . . . . . . . . . 10 (πœ‘ β†’ dom 𝐴 βŠ† 𝐼)
17 dprd2d.4 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ 𝐼) β†’ 𝐺dom DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))
1815, 9, 16, 17, 1, 8dprd2dlem2 19952 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (π‘†β€˜π‘₯) βŠ† (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))))
1914, 18sylan2 592 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ (π‘†β€˜π‘₯) βŠ† (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))))
20 1st2nd 8018 . . . . . . . . . . . . 13 ((Rel 𝐴 ∧ π‘₯ ∈ 𝐴) β†’ π‘₯ = ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
2115, 14, 20syl2an 595 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ π‘₯ = ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
22 simpr 484 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ π‘₯ ∈ (𝐴 β†Ύ 𝐢))
2321, 22eqeltrrd 2826 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ (𝐴 β†Ύ 𝐢))
24 fvex 6894 . . . . . . . . . . . . 13 (2nd β€˜π‘₯) ∈ V
2524opelresi 5979 . . . . . . . . . . . 12 (⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ (𝐴 β†Ύ 𝐢) ↔ ((1st β€˜π‘₯) ∈ 𝐢 ∧ ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ 𝐴))
2625simplbi 497 . . . . . . . . . . 11 (⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ (𝐴 β†Ύ 𝐢) β†’ (1st β€˜π‘₯) ∈ 𝐢)
2723, 26syl 17 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ (1st β€˜π‘₯) ∈ 𝐢)
28 ovex 7434 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))) ∈ V
29 eqid 2724 . . . . . . . . . . 11 (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))
30 sneq 4630 . . . . . . . . . . . . . 14 (𝑖 = (1st β€˜π‘₯) β†’ {𝑖} = {(1st β€˜π‘₯)})
3130imaeq2d 6049 . . . . . . . . . . . . 13 (𝑖 = (1st β€˜π‘₯) β†’ (𝐴 β€œ {𝑖}) = (𝐴 β€œ {(1st β€˜π‘₯)}))
32 oveq1 7408 . . . . . . . . . . . . 13 (𝑖 = (1st β€˜π‘₯) β†’ (𝑖𝑆𝑗) = ((1st β€˜π‘₯)𝑆𝑗))
3331, 32mpteq12dv 5229 . . . . . . . . . . . 12 (𝑖 = (1st β€˜π‘₯) β†’ (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗)))
3433oveq2d 7417 . . . . . . . . . . 11 (𝑖 = (1st β€˜π‘₯) β†’ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))))
3529, 34elrnmpt1s 5946 . . . . . . . . . 10 (((1st β€˜π‘₯) ∈ 𝐢 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))) ∈ V) β†’ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))) ∈ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3627, 28, 35sylancl 585 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))) ∈ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
37 elssuni 4931 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))) ∈ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) β†’ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3836, 37syl 17 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {(1st β€˜π‘₯)}) ↦ ((1st β€˜π‘₯)𝑆𝑗))) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3919, 38sstrd 3984 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝐴 β†Ύ 𝐢)) β†’ (π‘†β€˜π‘₯) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4039ralrimiva 3138 . . . . . 6 (πœ‘ β†’ βˆ€π‘₯ ∈ (𝐴 β†Ύ 𝐢)(π‘†β€˜π‘₯) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
41 iunss 5038 . . . . . 6 (βˆͺ π‘₯ ∈ (𝐴 β†Ύ 𝐢)(π‘†β€˜π‘₯) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↔ βˆ€π‘₯ ∈ (𝐴 β†Ύ 𝐢)(π‘†β€˜π‘₯) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4240, 41sylibr 233 . . . . 5 (πœ‘ β†’ βˆͺ π‘₯ ∈ (𝐴 β†Ύ 𝐢)(π‘†β€˜π‘₯) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4312, 42eqsstrrd 4013 . . . 4 (πœ‘ β†’ βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
44 dprd2d.6 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐢 βŠ† 𝐼)
4544sselda 3974 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑖 ∈ 𝐢) β†’ 𝑖 ∈ 𝐼)
4645, 17syldan 590 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ 𝐢) β†’ 𝐺dom DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))
47 ovex 7434 . . . . . . . . . . . 12 (𝑖𝑆𝑗) ∈ V
48 eqid 2724 . . . . . . . . . . . 12 (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))
4947, 48dmmpti 6684 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 β€œ {𝑖})
5049a1i 11 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ 𝐢) β†’ dom (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 β€œ {𝑖}))
51 imassrn 6060 . . . . . . . . . . . . . 14 (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† ran 𝑆
529frnd 6715 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ran 𝑆 βŠ† (SubGrpβ€˜πΊ))
53 mresspw 17535 . . . . . . . . . . . . . . . 16 ((SubGrpβ€˜πΊ) ∈ (Mooreβ€˜(Baseβ€˜πΊ)) β†’ (SubGrpβ€˜πΊ) βŠ† 𝒫 (Baseβ€˜πΊ))
547, 53syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (SubGrpβ€˜πΊ) βŠ† 𝒫 (Baseβ€˜πΊ))
5552, 54sstrd 3984 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran 𝑆 βŠ† 𝒫 (Baseβ€˜πΊ))
5651, 55sstrid 3985 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† 𝒫 (Baseβ€˜πΊ))
57 sspwuni 5093 . . . . . . . . . . . . 13 ((𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† 𝒫 (Baseβ€˜πΊ) ↔ βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† (Baseβ€˜πΊ))
5856, 57sylib 217 . . . . . . . . . . . 12 (πœ‘ β†’ βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† (Baseβ€˜πΊ))
598mrccl 17554 . . . . . . . . . . . 12 (((SubGrpβ€˜πΊ) ∈ (Mooreβ€˜(Baseβ€˜πΊ)) ∧ βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† (Baseβ€˜πΊ)) β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) ∈ (SubGrpβ€˜πΊ))
607, 58, 59syl2anc 583 . . . . . . . . . . 11 (πœ‘ β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) ∈ (SubGrpβ€˜πΊ))
6160adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ 𝐢) β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) ∈ (SubGrpβ€˜πΊ))
62 oveq2 7409 . . . . . . . . . . . . 13 (𝑗 = π‘˜ β†’ (𝑖𝑆𝑗) = (π‘–π‘†π‘˜))
6362, 48, 47fvmpt3i 6993 . . . . . . . . . . . 12 (π‘˜ ∈ (𝐴 β€œ {𝑖}) β†’ ((𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))β€˜π‘˜) = (π‘–π‘†π‘˜))
6463adantl 481 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ ((𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))β€˜π‘˜) = (π‘–π‘†π‘˜))
65 df-ov 7404 . . . . . . . . . . . . . 14 (π‘–π‘†π‘˜) = (π‘†β€˜βŸ¨π‘–, π‘˜βŸ©)
669ffnd 6708 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑆 Fn 𝐴)
6766ad2antrr 723 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ 𝑆 Fn 𝐴)
6813a1i 11 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ (𝐴 β†Ύ 𝐢) βŠ† 𝐴)
69 simplr 766 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ 𝑖 ∈ 𝐢)
70 elrelimasn 6074 . . . . . . . . . . . . . . . . . . . 20 (Rel 𝐴 β†’ (π‘˜ ∈ (𝐴 β€œ {𝑖}) ↔ π‘–π΄π‘˜))
7115, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (π‘˜ ∈ (𝐴 β€œ {𝑖}) ↔ π‘–π΄π‘˜))
7271adantr 480 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑖 ∈ 𝐢) β†’ (π‘˜ ∈ (𝐴 β€œ {𝑖}) ↔ π‘–π΄π‘˜))
7372biimpa 476 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ π‘–π΄π‘˜)
74 df-br 5139 . . . . . . . . . . . . . . . . 17 (π‘–π΄π‘˜ ↔ βŸ¨π‘–, π‘˜βŸ© ∈ 𝐴)
7573, 74sylib 217 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ βŸ¨π‘–, π‘˜βŸ© ∈ 𝐴)
76 vex 3470 . . . . . . . . . . . . . . . . 17 π‘˜ ∈ V
7776opelresi 5979 . . . . . . . . . . . . . . . 16 (βŸ¨π‘–, π‘˜βŸ© ∈ (𝐴 β†Ύ 𝐢) ↔ (𝑖 ∈ 𝐢 ∧ βŸ¨π‘–, π‘˜βŸ© ∈ 𝐴))
7869, 75, 77sylanbrc 582 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ βŸ¨π‘–, π‘˜βŸ© ∈ (𝐴 β†Ύ 𝐢))
79 fnfvima 7226 . . . . . . . . . . . . . . 15 ((𝑆 Fn 𝐴 ∧ (𝐴 β†Ύ 𝐢) βŠ† 𝐴 ∧ βŸ¨π‘–, π‘˜βŸ© ∈ (𝐴 β†Ύ 𝐢)) β†’ (π‘†β€˜βŸ¨π‘–, π‘˜βŸ©) ∈ (𝑆 β€œ (𝐴 β†Ύ 𝐢)))
8067, 68, 78, 79syl3anc 1368 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ (π‘†β€˜βŸ¨π‘–, π‘˜βŸ©) ∈ (𝑆 β€œ (𝐴 β†Ύ 𝐢)))
8165, 80eqeltrid 2829 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ (π‘–π‘†π‘˜) ∈ (𝑆 β€œ (𝐴 β†Ύ 𝐢)))
82 elssuni 4931 . . . . . . . . . . . . 13 ((π‘–π‘†π‘˜) ∈ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) β†’ (π‘–π‘†π‘˜) βŠ† βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)))
8381, 82syl 17 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ (π‘–π‘†π‘˜) βŠ† βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)))
847, 8, 58mrcssidd 17568 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
8584ad2antrr 723 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢)) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
8683, 85sstrd 3984 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ (π‘–π‘†π‘˜) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
8764, 86eqsstrd 4012 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ 𝐢) ∧ π‘˜ ∈ (𝐴 β€œ {𝑖})) β†’ ((𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))β€˜π‘˜) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
8846, 50, 61, 87dprdlub 19938 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ 𝐢) β†’ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
89 ovex 7434 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
9089elpw 4598 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) ↔ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
9188, 90sylibr 233 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ 𝐢) β†’ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
9291fmpttd 7106 . . . . . . 7 (πœ‘ β†’ (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))):πΆβŸΆπ’« (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
9392frnd 6715 . . . . . 6 (πœ‘ β†’ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) βŠ† 𝒫 (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
94 sspwuni 5093 . . . . . 6 (ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) βŠ† 𝒫 (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) ↔ βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
9593, 94sylib 217 . . . . 5 (πœ‘ β†’ βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
967, 8mrcssvd 17566 . . . . 5 (πœ‘ β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) βŠ† (Baseβ€˜πΊ))
9795, 96sstrd 3984 . . . 4 (πœ‘ β†’ βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) βŠ† (Baseβ€˜πΊ))
987, 8, 43, 97mrcssd 17567 . . 3 (πœ‘ β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) βŠ† (πΎβ€˜βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))))
998mrcsscl 17563 . . . 4 (((SubGrpβ€˜πΊ) ∈ (Mooreβ€˜(Baseβ€˜πΊ)) ∧ βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) ∧ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) ∈ (SubGrpβ€˜πΊ)) β†’ (πΎβ€˜βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
1007, 95, 60, 99syl3anc 1368 . . 3 (πœ‘ β†’ (πΎβ€˜βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))) βŠ† (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))))
10198, 100eqssd 3991 . 2 (πœ‘ β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) = (πΎβ€˜βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))))
102 eqid 2724 . . . . . . . 8 (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))
10389, 102dmmpti 6684 . . . . . . 7 dom (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
104103a1i 11 . . . . . 6 (πœ‘ β†’ dom (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
1051, 104, 44dprdres 19940 . . . . 5 (πœ‘ β†’ (𝐺dom DProd ((𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) β†Ύ 𝐢) ∧ (𝐺 DProd ((𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) β†Ύ 𝐢)) βŠ† (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
106105simpld 494 . . . 4 (πœ‘ β†’ 𝐺dom DProd ((𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) β†Ύ 𝐢))
10744resmptd 6030 . . . 4 (πœ‘ β†’ ((𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) β†Ύ 𝐢) = (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
108106, 107breqtrd 5164 . . 3 (πœ‘ β†’ 𝐺dom DProd (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))))
1098dprdspan 19939 . . 3 (𝐺dom DProd (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗)))) β†’ (𝐺 DProd (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (πΎβ€˜βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))))
110108, 109syl 17 . 2 (πœ‘ β†’ (𝐺 DProd (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (πΎβ€˜βˆͺ ran (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))))
111101, 110eqtr4d 2767 1 (πœ‘ β†’ (πΎβ€˜βˆͺ (𝑆 β€œ (𝐴 β†Ύ 𝐢))) = (𝐺 DProd (𝑖 ∈ 𝐢 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 β€œ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  Vcvv 3466   βŠ† wss 3940  π’« cpw 4594  {csn 4620  βŸ¨cop 4626  βˆͺ cuni 4899  βˆͺ ciun 4987   class class class wbr 5138   ↦ cmpt 5221  dom cdm 5666  ran crn 5667   β†Ύ cres 5668   β€œ cima 5669  Rel wrel 5671  Fun wfun 6527   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  1st c1st 7966  2nd c2nd 7967  Basecbs 17143  Moorecmre 17525  mrClscmrc 17526  ACScacs 17528  Grpcgrp 18853  SubGrpcsubg 19037   DProd cdprd 19905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-gsum 17387  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-subg 19040  df-ghm 19129  df-gim 19174  df-cntz 19223  df-oppg 19252  df-cmn 19692  df-dprd 19907
This theorem is referenced by:  dprd2da  19954  dprd2db  19955
  Copyright terms: Public domain W3C validator