MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem1 Structured version   Visualization version   GIF version

Theorem dprd2dlem1 19156
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dprd2d.6 (𝜑𝐶𝐼)
Assertion
Ref Expression
dprd2dlem1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐶,𝑖   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2dlem1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprd2d.5 . . . . . 6 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
2 dprdgrp 19120 . . . . . 6 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2798 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
54subgacs 18305 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
6 acsmre 16915 . . . . 5 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
73, 5, 63syl 18 . . . 4 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
8 dprd2d.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
9 dprd2d.2 . . . . . 6 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
10 ffun 6490 . . . . . 6 (𝑆:𝐴⟶(SubGrp‘𝐺) → Fun 𝑆)
11 funiunfv 6985 . . . . . 6 (Fun 𝑆 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
129, 10, 113syl 18 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
13 resss 5843 . . . . . . . . . 10 (𝐴𝐶) ⊆ 𝐴
1413sseli 3911 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
15 dprd2d.1 . . . . . . . . . 10 (𝜑 → Rel 𝐴)
16 dprd2d.3 . . . . . . . . . 10 (𝜑 → dom 𝐴𝐼)
17 dprd2d.4 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
1815, 9, 16, 17, 1, 8dprd2dlem2 19155 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
1914, 18sylan2 595 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
20 1st2nd 7720 . . . . . . . . . . . . 13 ((Rel 𝐴𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2115, 14, 20syl2an 598 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
22 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 ∈ (𝐴𝐶))
2321, 22eqeltrrd 2891 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶))
24 fvex 6658 . . . . . . . . . . . . 13 (2nd𝑥) ∈ V
2524opelresi 5826 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) ↔ ((1st𝑥) ∈ 𝐶 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴))
2625simplbi 501 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) → (1st𝑥) ∈ 𝐶)
2723, 26syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → (1st𝑥) ∈ 𝐶)
28 ovex 7168 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V
29 eqid 2798 . . . . . . . . . . 11 (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
30 sneq 4535 . . . . . . . . . . . . . 14 (𝑖 = (1st𝑥) → {𝑖} = {(1st𝑥)})
3130imaeq2d 5896 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑥)}))
32 oveq1 7142 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝑖𝑆𝑗) = ((1st𝑥)𝑆𝑗))
3331, 32mpteq12dv 5115 . . . . . . . . . . . 12 (𝑖 = (1st𝑥) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
3433oveq2d 7151 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
3529, 34elrnmpt1s 5793 . . . . . . . . . 10 (((1st𝑥) ∈ 𝐶 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3627, 28, 35sylancl 589 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
37 elssuni 4830 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3836, 37syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3919, 38sstrd 3925 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4039ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
41 iunss 4932 . . . . . 6 ( 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↔ ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4240, 41sylibr 237 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4312, 42eqsstrrd 3954 . . . 4 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
44 dprd2d.6 . . . . . . . . . . . 12 (𝜑𝐶𝐼)
4544sselda 3915 . . . . . . . . . . 11 ((𝜑𝑖𝐶) → 𝑖𝐼)
4645, 17syldan 594 . . . . . . . . . 10 ((𝜑𝑖𝐶) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
47 ovex 7168 . . . . . . . . . . . 12 (𝑖𝑆𝑗) ∈ V
48 eqid 2798 . . . . . . . . . . . 12 (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))
4947, 48dmmpti 6464 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖})
5049a1i 11 . . . . . . . . . 10 ((𝜑𝑖𝐶) → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖}))
51 imassrn 5907 . . . . . . . . . . . . . 14 (𝑆 “ (𝐴𝐶)) ⊆ ran 𝑆
529frnd 6494 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
53 mresspw 16855 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
547, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5552, 54sstrd 3925 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5651, 55sstrid 3926 . . . . . . . . . . . . 13 (𝜑 → (𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺))
57 sspwuni 4985 . . . . . . . . . . . . 13 ((𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
5856, 57sylib 221 . . . . . . . . . . . 12 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
598mrccl 16874 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
607, 58, 59syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
6160adantr 484 . . . . . . . . . 10 ((𝜑𝑖𝐶) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
62 oveq2 7143 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑖𝑆𝑗) = (𝑖𝑆𝑘))
6362, 48, 47fvmpt3i 6750 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑖}) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
6463adantl 485 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
65 df-ov 7138 . . . . . . . . . . . . . 14 (𝑖𝑆𝑘) = (𝑆‘⟨𝑖, 𝑘⟩)
669ffnd 6488 . . . . . . . . . . . . . . . 16 (𝜑𝑆 Fn 𝐴)
6766ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑆 Fn 𝐴)
6813a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝐴𝐶) ⊆ 𝐴)
69 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐶)
70 elrelimasn 5920 . . . . . . . . . . . . . . . . . . . 20 (Rel 𝐴 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7115, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7271adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐶) → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7372biimpa 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐴𝑘)
74 df-br 5031 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝑘 ↔ ⟨𝑖, 𝑘⟩ ∈ 𝐴)
7573, 74sylib 221 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ 𝐴)
76 vex 3444 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
7776opelresi 5826 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶) ↔ (𝑖𝐶 ∧ ⟨𝑖, 𝑘⟩ ∈ 𝐴))
7869, 75, 77sylanbrc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶))
79 fnfvima 6973 . . . . . . . . . . . . . . 15 ((𝑆 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴 ∧ ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶)) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8067, 68, 78, 79syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8165, 80eqeltrid 2894 . . . . . . . . . . . . 13 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)))
82 elssuni 4830 . . . . . . . . . . . . 13 ((𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
8381, 82syl 17 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
847, 8, 58mrcssidd 16888 . . . . . . . . . . . . 13 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8584ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8683, 85sstrd 3925 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8764, 86eqsstrd 3953 . . . . . . . . . 10 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8846, 50, 61, 87dprdlub 19141 . . . . . . . . 9 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
89 ovex 7168 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
9089elpw 4501 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9188, 90sylibr 237 . . . . . . . 8 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9291fmpttd 6856 . . . . . . 7 (𝜑 → (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))):𝐶⟶𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9392frnd 6494 . . . . . 6 (𝜑 → ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
94 sspwuni 4985 . . . . . 6 (ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9593, 94sylib 221 . . . . 5 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
967, 8mrcssvd 16886 . . . . 5 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (Base‘𝐺))
9795, 96sstrd 3925 . . . 4 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (Base‘𝐺))
987, 8, 43, 97mrcssd 16887 . . 3 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
998mrcsscl 16883 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))) ∧ (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺)) → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
1007, 95, 60, 99syl3anc 1368 . . 3 (𝜑 → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
10198, 100eqssd 3932 . 2 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
102 eqid 2798 . . . . . . . 8 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
10389, 102dmmpti 6464 . . . . . . 7 dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
104103a1i 11 . . . . . 6 (𝜑 → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
1051, 104, 44dprdres 19143 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) ∧ (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶)) ⊆ (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
106105simpld 498 . . . 4 (𝜑𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶))
10744resmptd 5875 . . . 4 (𝜑 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
108106, 107breqtrd 5056 . . 3 (𝜑𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
1098dprdspan 19142 . . 3 (𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
110108, 109syl 17 . 2 (𝜑 → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
111101, 110eqtr4d 2836 1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  𝒫 cpw 4497  {csn 4525  cop 4531   cuni 4800   ciun 4881   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Rel wrel 5524  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  Basecbs 16475  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Grpcgrp 18095  SubGrpcsubg 18265   DProd cdprd 19108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-cmn 18900  df-dprd 19110
This theorem is referenced by:  dprd2da  19157  dprd2db  19158
  Copyright terms: Public domain W3C validator