MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem1 Structured version   Visualization version   GIF version

Theorem dprd2dlem1 20029
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dprd2d.6 (𝜑𝐶𝐼)
Assertion
Ref Expression
dprd2dlem1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐶,𝑖   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2dlem1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprd2d.5 . . . . . 6 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
2 dprdgrp 19993 . . . . . 6 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2736 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
54subgacs 19149 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
6 acsmre 17669 . . . . 5 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
73, 5, 63syl 18 . . . 4 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
8 dprd2d.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
9 dprd2d.2 . . . . . 6 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
10 ffun 6714 . . . . . 6 (𝑆:𝐴⟶(SubGrp‘𝐺) → Fun 𝑆)
11 funiunfv 7245 . . . . . 6 (Fun 𝑆 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
129, 10, 113syl 18 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
13 resss 5993 . . . . . . . . . 10 (𝐴𝐶) ⊆ 𝐴
1413sseli 3959 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
15 dprd2d.1 . . . . . . . . . 10 (𝜑 → Rel 𝐴)
16 dprd2d.3 . . . . . . . . . 10 (𝜑 → dom 𝐴𝐼)
17 dprd2d.4 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
1815, 9, 16, 17, 1, 8dprd2dlem2 20028 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
1914, 18sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
20 1st2nd 8043 . . . . . . . . . . . . 13 ((Rel 𝐴𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2115, 14, 20syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
22 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 ∈ (𝐴𝐶))
2321, 22eqeltrrd 2836 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶))
24 fvex 6894 . . . . . . . . . . . . 13 (2nd𝑥) ∈ V
2524opelresi 5979 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) ↔ ((1st𝑥) ∈ 𝐶 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴))
2625simplbi 497 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) → (1st𝑥) ∈ 𝐶)
2723, 26syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → (1st𝑥) ∈ 𝐶)
28 ovex 7443 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V
29 eqid 2736 . . . . . . . . . . 11 (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
30 sneq 4616 . . . . . . . . . . . . . 14 (𝑖 = (1st𝑥) → {𝑖} = {(1st𝑥)})
3130imaeq2d 6052 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑥)}))
32 oveq1 7417 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝑖𝑆𝑗) = ((1st𝑥)𝑆𝑗))
3331, 32mpteq12dv 5212 . . . . . . . . . . . 12 (𝑖 = (1st𝑥) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
3433oveq2d 7426 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
3529, 34elrnmpt1s 5944 . . . . . . . . . 10 (((1st𝑥) ∈ 𝐶 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3627, 28, 35sylancl 586 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
37 elssuni 4918 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3836, 37syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3919, 38sstrd 3974 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4039ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
41 iunss 5026 . . . . . 6 ( 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↔ ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4240, 41sylibr 234 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4312, 42eqsstrrd 3999 . . . 4 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
44 dprd2d.6 . . . . . . . . . . . 12 (𝜑𝐶𝐼)
4544sselda 3963 . . . . . . . . . . 11 ((𝜑𝑖𝐶) → 𝑖𝐼)
4645, 17syldan 591 . . . . . . . . . 10 ((𝜑𝑖𝐶) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
47 ovex 7443 . . . . . . . . . . . 12 (𝑖𝑆𝑗) ∈ V
48 eqid 2736 . . . . . . . . . . . 12 (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))
4947, 48dmmpti 6687 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖})
5049a1i 11 . . . . . . . . . 10 ((𝜑𝑖𝐶) → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖}))
51 imassrn 6063 . . . . . . . . . . . . . 14 (𝑆 “ (𝐴𝐶)) ⊆ ran 𝑆
529frnd 6719 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
53 mresspw 17609 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
547, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5552, 54sstrd 3974 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5651, 55sstrid 3975 . . . . . . . . . . . . 13 (𝜑 → (𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺))
57 sspwuni 5081 . . . . . . . . . . . . 13 ((𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
5856, 57sylib 218 . . . . . . . . . . . 12 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
598mrccl 17628 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
607, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
6160adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐶) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
62 oveq2 7418 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑖𝑆𝑗) = (𝑖𝑆𝑘))
6362, 48, 47fvmpt3i 6996 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑖}) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
6463adantl 481 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
65 df-ov 7413 . . . . . . . . . . . . . 14 (𝑖𝑆𝑘) = (𝑆‘⟨𝑖, 𝑘⟩)
669ffnd 6712 . . . . . . . . . . . . . . . 16 (𝜑𝑆 Fn 𝐴)
6766ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑆 Fn 𝐴)
6813a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝐴𝐶) ⊆ 𝐴)
69 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐶)
70 elrelimasn 6078 . . . . . . . . . . . . . . . . . . . 20 (Rel 𝐴 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7115, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7271adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐶) → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7372biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐴𝑘)
74 df-br 5125 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝑘 ↔ ⟨𝑖, 𝑘⟩ ∈ 𝐴)
7573, 74sylib 218 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ 𝐴)
76 vex 3468 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
7776opelresi 5979 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶) ↔ (𝑖𝐶 ∧ ⟨𝑖, 𝑘⟩ ∈ 𝐴))
7869, 75, 77sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶))
79 fnfvima 7230 . . . . . . . . . . . . . . 15 ((𝑆 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴 ∧ ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶)) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8067, 68, 78, 79syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8165, 80eqeltrid 2839 . . . . . . . . . . . . 13 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)))
82 elssuni 4918 . . . . . . . . . . . . 13 ((𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
8381, 82syl 17 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
847, 8, 58mrcssidd 17642 . . . . . . . . . . . . 13 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8584ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8683, 85sstrd 3974 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8764, 86eqsstrd 3998 . . . . . . . . . 10 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8846, 50, 61, 87dprdlub 20014 . . . . . . . . 9 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
89 ovex 7443 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
9089elpw 4584 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9188, 90sylibr 234 . . . . . . . 8 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9291fmpttd 7110 . . . . . . 7 (𝜑 → (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))):𝐶⟶𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9392frnd 6719 . . . . . 6 (𝜑 → ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
94 sspwuni 5081 . . . . . 6 (ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9593, 94sylib 218 . . . . 5 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
967, 8mrcssvd 17640 . . . . 5 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (Base‘𝐺))
9795, 96sstrd 3974 . . . 4 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (Base‘𝐺))
987, 8, 43, 97mrcssd 17641 . . 3 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
998mrcsscl 17637 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))) ∧ (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺)) → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
1007, 95, 60, 99syl3anc 1373 . . 3 (𝜑 → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
10198, 100eqssd 3981 . 2 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
102 eqid 2736 . . . . . . . 8 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
10389, 102dmmpti 6687 . . . . . . 7 dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
104103a1i 11 . . . . . 6 (𝜑 → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
1051, 104, 44dprdres 20016 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) ∧ (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶)) ⊆ (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
106105simpld 494 . . . 4 (𝜑𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶))
10744resmptd 6032 . . . 4 (𝜑 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
108106, 107breqtrd 5150 . . 3 (𝜑𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
1098dprdspan 20015 . . 3 (𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
110108, 109syl 17 . 2 (𝜑 → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
111101, 110eqtr4d 2774 1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  𝒫 cpw 4580  {csn 4606  cop 4612   cuni 4888   ciun 4972   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Rel wrel 5664  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Moorecmre 17599  mrClscmrc 17600  ACScacs 17602  Grpcgrp 18921  SubGrpcsubg 19108   DProd cdprd 19981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-cmn 19768  df-dprd 19983
This theorem is referenced by:  dprd2da  20030  dprd2db  20031
  Copyright terms: Public domain W3C validator