MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem1 Structured version   Visualization version   GIF version

Theorem dprd2dlem1 19940
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dprd2d.6 (𝜑𝐶𝐼)
Assertion
Ref Expression
dprd2dlem1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐶,𝑖   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2dlem1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprd2d.5 . . . . . 6 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
2 dprdgrp 19904 . . . . . 6 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
54subgacs 19058 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
6 acsmre 17576 . . . . 5 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
73, 5, 63syl 18 . . . 4 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
8 dprd2d.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
9 dprd2d.2 . . . . . 6 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
10 ffun 6659 . . . . . 6 (𝑆:𝐴⟶(SubGrp‘𝐺) → Fun 𝑆)
11 funiunfv 7188 . . . . . 6 (Fun 𝑆 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
129, 10, 113syl 18 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
13 resss 5956 . . . . . . . . . 10 (𝐴𝐶) ⊆ 𝐴
1413sseli 3933 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
15 dprd2d.1 . . . . . . . . . 10 (𝜑 → Rel 𝐴)
16 dprd2d.3 . . . . . . . . . 10 (𝜑 → dom 𝐴𝐼)
17 dprd2d.4 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
1815, 9, 16, 17, 1, 8dprd2dlem2 19939 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
1914, 18sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
20 1st2nd 7981 . . . . . . . . . . . . 13 ((Rel 𝐴𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2115, 14, 20syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
22 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 ∈ (𝐴𝐶))
2321, 22eqeltrrd 2829 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶))
24 fvex 6839 . . . . . . . . . . . . 13 (2nd𝑥) ∈ V
2524opelresi 5942 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) ↔ ((1st𝑥) ∈ 𝐶 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴))
2625simplbi 497 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) → (1st𝑥) ∈ 𝐶)
2723, 26syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → (1st𝑥) ∈ 𝐶)
28 ovex 7386 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V
29 eqid 2729 . . . . . . . . . . 11 (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
30 sneq 4589 . . . . . . . . . . . . . 14 (𝑖 = (1st𝑥) → {𝑖} = {(1st𝑥)})
3130imaeq2d 6015 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑥)}))
32 oveq1 7360 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝑖𝑆𝑗) = ((1st𝑥)𝑆𝑗))
3331, 32mpteq12dv 5182 . . . . . . . . . . . 12 (𝑖 = (1st𝑥) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
3433oveq2d 7369 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
3529, 34elrnmpt1s 5905 . . . . . . . . . 10 (((1st𝑥) ∈ 𝐶 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3627, 28, 35sylancl 586 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
37 elssuni 4891 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3836, 37syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3919, 38sstrd 3948 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4039ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
41 iunss 4997 . . . . . 6 ( 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↔ ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4240, 41sylibr 234 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4312, 42eqsstrrd 3973 . . . 4 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
44 dprd2d.6 . . . . . . . . . . . 12 (𝜑𝐶𝐼)
4544sselda 3937 . . . . . . . . . . 11 ((𝜑𝑖𝐶) → 𝑖𝐼)
4645, 17syldan 591 . . . . . . . . . 10 ((𝜑𝑖𝐶) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
47 ovex 7386 . . . . . . . . . . . 12 (𝑖𝑆𝑗) ∈ V
48 eqid 2729 . . . . . . . . . . . 12 (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))
4947, 48dmmpti 6630 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖})
5049a1i 11 . . . . . . . . . 10 ((𝜑𝑖𝐶) → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖}))
51 imassrn 6026 . . . . . . . . . . . . . 14 (𝑆 “ (𝐴𝐶)) ⊆ ran 𝑆
529frnd 6664 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
53 mresspw 17512 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
547, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5552, 54sstrd 3948 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5651, 55sstrid 3949 . . . . . . . . . . . . 13 (𝜑 → (𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺))
57 sspwuni 5052 . . . . . . . . . . . . 13 ((𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
5856, 57sylib 218 . . . . . . . . . . . 12 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
598mrccl 17535 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
607, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
6160adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐶) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
62 oveq2 7361 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑖𝑆𝑗) = (𝑖𝑆𝑘))
6362, 48, 47fvmpt3i 6939 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑖}) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
6463adantl 481 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
65 df-ov 7356 . . . . . . . . . . . . . 14 (𝑖𝑆𝑘) = (𝑆‘⟨𝑖, 𝑘⟩)
669ffnd 6657 . . . . . . . . . . . . . . . 16 (𝜑𝑆 Fn 𝐴)
6766ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑆 Fn 𝐴)
6813a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝐴𝐶) ⊆ 𝐴)
69 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐶)
70 elrelimasn 6041 . . . . . . . . . . . . . . . . . . . 20 (Rel 𝐴 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7115, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7271adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐶) → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7372biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐴𝑘)
74 df-br 5096 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝑘 ↔ ⟨𝑖, 𝑘⟩ ∈ 𝐴)
7573, 74sylib 218 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ 𝐴)
76 vex 3442 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
7776opelresi 5942 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶) ↔ (𝑖𝐶 ∧ ⟨𝑖, 𝑘⟩ ∈ 𝐴))
7869, 75, 77sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶))
79 fnfvima 7173 . . . . . . . . . . . . . . 15 ((𝑆 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴 ∧ ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶)) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8067, 68, 78, 79syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8165, 80eqeltrid 2832 . . . . . . . . . . . . 13 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)))
82 elssuni 4891 . . . . . . . . . . . . 13 ((𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
8381, 82syl 17 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
847, 8, 58mrcssidd 17549 . . . . . . . . . . . . 13 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8584ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8683, 85sstrd 3948 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8764, 86eqsstrd 3972 . . . . . . . . . 10 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8846, 50, 61, 87dprdlub 19925 . . . . . . . . 9 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
89 ovex 7386 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
9089elpw 4557 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9188, 90sylibr 234 . . . . . . . 8 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9291fmpttd 7053 . . . . . . 7 (𝜑 → (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))):𝐶⟶𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9392frnd 6664 . . . . . 6 (𝜑 → ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
94 sspwuni 5052 . . . . . 6 (ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9593, 94sylib 218 . . . . 5 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
967, 8mrcssvd 17547 . . . . 5 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (Base‘𝐺))
9795, 96sstrd 3948 . . . 4 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (Base‘𝐺))
987, 8, 43, 97mrcssd 17548 . . 3 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
998mrcsscl 17544 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))) ∧ (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺)) → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
1007, 95, 60, 99syl3anc 1373 . . 3 (𝜑 → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
10198, 100eqssd 3955 . 2 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
102 eqid 2729 . . . . . . . 8 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
10389, 102dmmpti 6630 . . . . . . 7 dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
104103a1i 11 . . . . . 6 (𝜑 → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
1051, 104, 44dprdres 19927 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) ∧ (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶)) ⊆ (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
106105simpld 494 . . . 4 (𝜑𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶))
10744resmptd 5995 . . . 4 (𝜑 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
108106, 107breqtrd 5121 . . 3 (𝜑𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
1098dprdspan 19926 . . 3 (𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
110108, 109syl 17 . 2 (𝜑 → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
111101, 110eqtr4d 2767 1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  𝒫 cpw 4553  {csn 4579  cop 4585   cuni 4861   ciun 4944   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Rel wrel 5628  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Moorecmre 17502  mrClscmrc 17503  ACScacs 17505  Grpcgrp 18830  SubGrpcsubg 19017   DProd cdprd 19892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-gim 19156  df-cntz 19214  df-oppg 19243  df-cmn 19679  df-dprd 19894
This theorem is referenced by:  dprd2da  19941  dprd2db  19942
  Copyright terms: Public domain W3C validator