MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2dlem1 Structured version   Visualization version   GIF version

Theorem dprd2dlem1 19559
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dprd2d.6 (𝜑𝐶𝐼)
Assertion
Ref Expression
dprd2dlem1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐶,𝑖   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑗)   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2dlem1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprd2d.5 . . . . . 6 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
2 dprdgrp 19523 . . . . . 6 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
54subgacs 18704 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
6 acsmre 17278 . . . . 5 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
73, 5, 63syl 18 . . . 4 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
8 dprd2d.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
9 dprd2d.2 . . . . . 6 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
10 ffun 6587 . . . . . 6 (𝑆:𝐴⟶(SubGrp‘𝐺) → Fun 𝑆)
11 funiunfv 7103 . . . . . 6 (Fun 𝑆 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
129, 10, 113syl 18 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) = (𝑆 “ (𝐴𝐶)))
13 resss 5905 . . . . . . . . . 10 (𝐴𝐶) ⊆ 𝐴
1413sseli 3913 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
15 dprd2d.1 . . . . . . . . . 10 (𝜑 → Rel 𝐴)
16 dprd2d.3 . . . . . . . . . 10 (𝜑 → dom 𝐴𝐼)
17 dprd2d.4 . . . . . . . . . 10 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
1815, 9, 16, 17, 1, 8dprd2dlem2 19558 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
1914, 18sylan2 592 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
20 1st2nd 7853 . . . . . . . . . . . . 13 ((Rel 𝐴𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2115, 14, 20syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
22 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥 ∈ (𝐴𝐶))
2321, 22eqeltrrd 2840 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶))
24 fvex 6769 . . . . . . . . . . . . 13 (2nd𝑥) ∈ V
2524opelresi 5888 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) ↔ ((1st𝑥) ∈ 𝐶 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴))
2625simplbi 497 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴𝐶) → (1st𝑥) ∈ 𝐶)
2723, 26syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → (1st𝑥) ∈ 𝐶)
28 ovex 7288 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V
29 eqid 2738 . . . . . . . . . . 11 (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
30 sneq 4568 . . . . . . . . . . . . . 14 (𝑖 = (1st𝑥) → {𝑖} = {(1st𝑥)})
3130imaeq2d 5958 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑥)}))
32 oveq1 7262 . . . . . . . . . . . . 13 (𝑖 = (1st𝑥) → (𝑖𝑆𝑗) = ((1st𝑥)𝑆𝑗))
3331, 32mpteq12dv 5161 . . . . . . . . . . . 12 (𝑖 = (1st𝑥) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
3433oveq2d 7271 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
3529, 34elrnmpt1s 5855 . . . . . . . . . 10 (((1st𝑥) ∈ 𝐶 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ V) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3627, 28, 35sylancl 585 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
37 elssuni 4868 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3836, 37syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
3919, 38sstrd 3927 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4039ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
41 iunss 4971 . . . . . 6 ( 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↔ ∀𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4240, 41sylibr 233 . . . . 5 (𝜑 𝑥 ∈ (𝐴𝐶)(𝑆𝑥) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
4312, 42eqsstrrd 3956 . . . 4 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
44 dprd2d.6 . . . . . . . . . . . 12 (𝜑𝐶𝐼)
4544sselda 3917 . . . . . . . . . . 11 ((𝜑𝑖𝐶) → 𝑖𝐼)
4645, 17syldan 590 . . . . . . . . . 10 ((𝜑𝑖𝐶) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
47 ovex 7288 . . . . . . . . . . . 12 (𝑖𝑆𝑗) ∈ V
48 eqid 2738 . . . . . . . . . . . 12 (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))
4947, 48dmmpti 6561 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖})
5049a1i 11 . . . . . . . . . 10 ((𝜑𝑖𝐶) → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖}))
51 imassrn 5969 . . . . . . . . . . . . . 14 (𝑆 “ (𝐴𝐶)) ⊆ ran 𝑆
529frnd 6592 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
53 mresspw 17218 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
547, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5552, 54sstrd 3927 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5651, 55sstrid 3928 . . . . . . . . . . . . 13 (𝜑 → (𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺))
57 sspwuni 5025 . . . . . . . . . . . . 13 ((𝑆 “ (𝐴𝐶)) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
5856, 57sylib 217 . . . . . . . . . . . 12 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺))
598mrccl 17237 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴𝐶)) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
607, 58, 59syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
6160adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝐶) → (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺))
62 oveq2 7263 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑖𝑆𝑗) = (𝑖𝑆𝑘))
6362, 48, 47fvmpt3i 6862 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴 “ {𝑖}) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
6463adantl 481 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) = (𝑖𝑆𝑘))
65 df-ov 7258 . . . . . . . . . . . . . 14 (𝑖𝑆𝑘) = (𝑆‘⟨𝑖, 𝑘⟩)
669ffnd 6585 . . . . . . . . . . . . . . . 16 (𝜑𝑆 Fn 𝐴)
6766ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑆 Fn 𝐴)
6813a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝐴𝐶) ⊆ 𝐴)
69 simplr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐶)
70 elrelimasn 5982 . . . . . . . . . . . . . . . . . . . 20 (Rel 𝐴 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7115, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7271adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐶) → (𝑘 ∈ (𝐴 “ {𝑖}) ↔ 𝑖𝐴𝑘))
7372biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → 𝑖𝐴𝑘)
74 df-br 5071 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝑘 ↔ ⟨𝑖, 𝑘⟩ ∈ 𝐴)
7573, 74sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ 𝐴)
76 vex 3426 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
7776opelresi 5888 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶) ↔ (𝑖𝐶 ∧ ⟨𝑖, 𝑘⟩ ∈ 𝐴))
7869, 75, 77sylanbrc 582 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶))
79 fnfvima 7091 . . . . . . . . . . . . . . 15 ((𝑆 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴 ∧ ⟨𝑖, 𝑘⟩ ∈ (𝐴𝐶)) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8067, 68, 78, 79syl3anc 1369 . . . . . . . . . . . . . 14 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆‘⟨𝑖, 𝑘⟩) ∈ (𝑆 “ (𝐴𝐶)))
8165, 80eqeltrid 2843 . . . . . . . . . . . . 13 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)))
82 elssuni 4868 . . . . . . . . . . . . 13 ((𝑖𝑆𝑘) ∈ (𝑆 “ (𝐴𝐶)) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
8381, 82syl 17 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝑆 “ (𝐴𝐶)))
847, 8, 58mrcssidd 17251 . . . . . . . . . . . . 13 (𝜑 (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8584ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑆 “ (𝐴𝐶)) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8683, 85sstrd 3927 . . . . . . . . . . 11 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → (𝑖𝑆𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8764, 86eqsstrd 3955 . . . . . . . . . 10 (((𝜑𝑖𝐶) ∧ 𝑘 ∈ (𝐴 “ {𝑖})) → ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))‘𝑘) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
8846, 50, 61, 87dprdlub 19544 . . . . . . . . 9 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
89 ovex 7288 . . . . . . . . . 10 (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
9089elpw 4534 . . . . . . . . 9 ((𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9188, 90sylibr 233 . . . . . . . 8 ((𝜑𝑖𝐶) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9291fmpttd 6971 . . . . . . 7 (𝜑 → (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))):𝐶⟶𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
9392frnd 6592 . . . . . 6 (𝜑 → ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))))
94 sspwuni 5025 . . . . . 6 (ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ 𝒫 (𝐾 (𝑆 “ (𝐴𝐶))) ↔ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
9593, 94sylib 217 . . . . 5 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
967, 8mrcssvd 17249 . . . . 5 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (Base‘𝐺))
9795, 96sstrd 3927 . . . 4 (𝜑 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (Base‘𝐺))
987, 8, 43, 97mrcssd 17250 . . 3 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) ⊆ (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
998mrcsscl 17246 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))) ∧ (𝐾 (𝑆 “ (𝐴𝐶))) ∈ (SubGrp‘𝐺)) → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
1007, 95, 60, 99syl3anc 1369 . . 3 (𝜑 → (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) ⊆ (𝐾 (𝑆 “ (𝐴𝐶))))
10198, 100eqssd 3934 . 2 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
102 eqid 2738 . . . . . . . 8 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
10389, 102dmmpti 6561 . . . . . . 7 dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
104103a1i 11 . . . . . 6 (𝜑 → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
1051, 104, 44dprdres 19546 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) ∧ (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶)) ⊆ (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
106105simpld 494 . . . 4 (𝜑𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶))
10744resmptd 5937 . . . 4 (𝜑 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ 𝐶) = (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
108106, 107breqtrd 5096 . . 3 (𝜑𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
1098dprdspan 19545 . . 3 (𝐺dom DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
110108, 109syl 17 . 2 (𝜑 → (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))) = (𝐾 ran (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
111101, 110eqtr4d 2781 1 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐶))) = (𝐺 DProd (𝑖𝐶 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558  cop 4564   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Grpcgrp 18492  SubGrpcsubg 18664   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-cmn 19303  df-dprd 19513
This theorem is referenced by:  dprd2da  19560  dprd2db  19561
  Copyright terms: Public domain W3C validator