Step | Hyp | Ref
| Expression |
1 | | tfsconcat.op |
. . . . 5
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
2 | 1 | tfsconcatun 42390 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
3 | 2 | fveq1d 6894 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵)‘(𝐶 +o 𝑋)) = ((𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})‘(𝐶 +o 𝑋))) |
4 | 3 | adantr 480 |
. 2
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o 𝑋)) = ((𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})‘(𝐶 +o 𝑋))) |
5 | | simplll 772 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → 𝐴 Fn 𝐶) |
6 | | simplrl 774 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → 𝐶 ∈ On) |
7 | | simplrr 775 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → 𝐷 ∈ On) |
8 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) |
9 | | tfsconcatlem 42389 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃!𝑦∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
10 | 6, 7, 8, 9 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃!𝑦∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
11 | 10 | ralrimiva 3145 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∀𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃!𝑦∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
12 | | eqid 2731 |
. . . . . 6
⊢
{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} |
13 | 12 | fnopabg 6688 |
. . . . 5
⊢
(∀𝑥 ∈
((𝐶 +o 𝐷) ∖ 𝐶)∃!𝑦∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} Fn ((𝐶 +o 𝐷) ∖ 𝐶)) |
14 | 11, 13 | sylib 217 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} Fn ((𝐶 +o 𝐷) ∖ 𝐶)) |
15 | 14 | adantr 480 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} Fn ((𝐶 +o 𝐷) ∖ 𝐶)) |
16 | | disjdif 4472 |
. . . 4
⊢ (𝐶 ∩ ((𝐶 +o 𝐷) ∖ 𝐶)) = ∅ |
17 | 16 | a1i 11 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → (𝐶 ∩ ((𝐶 +o 𝐷) ∖ 𝐶)) = ∅) |
18 | | pm3.22 459 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐷 ∈ On ∧ 𝐶 ∈ On)) |
19 | 18 | adantl 481 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 ∈ On ∧ 𝐶 ∈ On)) |
20 | | oaordi 8549 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑋 ∈ 𝐷 → (𝐶 +o 𝑋) ∈ (𝐶 +o 𝐷))) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑋 ∈ 𝐷 → (𝐶 +o 𝑋) ∈ (𝐶 +o 𝐷))) |
22 | 21 | imp 406 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → (𝐶 +o 𝑋) ∈ (𝐶 +o 𝐷)) |
23 | | simplrl 774 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → 𝐶 ∈ On) |
24 | | simpr 484 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ∈ On) |
25 | 24 | adantl 481 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) |
26 | | onelon 6390 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝑋 ∈ 𝐷) → 𝑋 ∈ On) |
27 | 25, 26 | sylan 579 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → 𝑋 ∈ On) |
28 | | oaword1 8555 |
. . . . 5
⊢ ((𝐶 ∈ On ∧ 𝑋 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝑋)) |
29 | 23, 27, 28 | syl2anc 583 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → 𝐶 ⊆ (𝐶 +o 𝑋)) |
30 | | oacl 8538 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
31 | | eloni 6375 |
. . . . . . . . 9
⊢ ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷)) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷)) |
33 | | eloni 6375 |
. . . . . . . . 9
⊢ (𝐶 ∈ On → Ord 𝐶) |
34 | 33 | adantr 480 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶) |
35 | 32, 34 | jca 511 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
36 | 35 | adantl 481 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
37 | 36 | adantr 480 |
. . . . 5
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
38 | | ordeldif 42311 |
. . . . 5
⊢ ((Ord
(𝐶 +o 𝐷) ∧ Ord 𝐶) → ((𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑋) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑋)))) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ((𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑋) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑋)))) |
40 | 22, 29, 39 | mpbir2and 710 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → (𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) |
41 | 5, 15, 17, 40 | fvun2d 6986 |
. 2
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ((𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})‘(𝐶 +o 𝑋)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}‘(𝐶 +o 𝑋))) |
42 | | eqid 2731 |
. . . . . 6
⊢ (𝐶 +o 𝑋) = (𝐶 +o 𝑋) |
43 | | eqid 2731 |
. . . . . 6
⊢ (𝐵‘𝑋) = (𝐵‘𝑋) |
44 | | oveq2 7420 |
. . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝐶 +o 𝑧) = (𝐶 +o 𝑋)) |
45 | 44 | eqeq2d 2742 |
. . . . . . . 8
⊢ (𝑧 = 𝑋 → ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ↔ (𝐶 +o 𝑋) = (𝐶 +o 𝑋))) |
46 | | fveq2 6892 |
. . . . . . . . 9
⊢ (𝑧 = 𝑋 → (𝐵‘𝑧) = (𝐵‘𝑋)) |
47 | 46 | eqeq2d 2742 |
. . . . . . . 8
⊢ (𝑧 = 𝑋 → ((𝐵‘𝑋) = (𝐵‘𝑧) ↔ (𝐵‘𝑋) = (𝐵‘𝑋))) |
48 | 45, 47 | anbi12d 630 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → (((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧)) ↔ ((𝐶 +o 𝑋) = (𝐶 +o 𝑋) ∧ (𝐵‘𝑋) = (𝐵‘𝑋)))) |
49 | 48 | rspcev 3613 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐷 ∧ ((𝐶 +o 𝑋) = (𝐶 +o 𝑋) ∧ (𝐵‘𝑋) = (𝐵‘𝑋))) → ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧))) |
50 | 42, 43, 49 | mpanr12 702 |
. . . . 5
⊢ (𝑋 ∈ 𝐷 → ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧))) |
51 | 50 | adantl 481 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧))) |
52 | | ovex 7445 |
. . . . . 6
⊢ (𝐶 +o 𝑋) ∈ V |
53 | | fvex 6905 |
. . . . . 6
⊢ (𝐵‘𝑋) ∈ V |
54 | 52, 53 | pm3.2i 470 |
. . . . 5
⊢ ((𝐶 +o 𝑋) ∈ V ∧ (𝐵‘𝑋) ∈ V) |
55 | | eleq1 2820 |
. . . . . . 7
⊢ (𝑥 = (𝐶 +o 𝑋) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶))) |
56 | | eqeq1 2735 |
. . . . . . . . 9
⊢ (𝑥 = (𝐶 +o 𝑋) → (𝑥 = (𝐶 +o 𝑧) ↔ (𝐶 +o 𝑋) = (𝐶 +o 𝑧))) |
57 | 56 | anbi1d 629 |
. . . . . . . 8
⊢ (𝑥 = (𝐶 +o 𝑋) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
58 | 57 | rexbidv 3177 |
. . . . . . 7
⊢ (𝑥 = (𝐶 +o 𝑋) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
59 | 55, 58 | anbi12d 630 |
. . . . . 6
⊢ (𝑥 = (𝐶 +o 𝑋) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ ((𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))))) |
60 | | eqeq1 2735 |
. . . . . . . . 9
⊢ (𝑦 = (𝐵‘𝑋) → (𝑦 = (𝐵‘𝑧) ↔ (𝐵‘𝑋) = (𝐵‘𝑧))) |
61 | 60 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑦 = (𝐵‘𝑋) → (((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧)))) |
62 | 61 | rexbidv 3177 |
. . . . . . 7
⊢ (𝑦 = (𝐵‘𝑋) → (∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧)))) |
63 | 62 | anbi2d 628 |
. . . . . 6
⊢ (𝑦 = (𝐵‘𝑋) → (((𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ ((𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧))))) |
64 | 59, 63 | opelopabg 5539 |
. . . . 5
⊢ (((𝐶 +o 𝑋) ∈ V ∧ (𝐵‘𝑋) ∈ V) → (⟨(𝐶 +o 𝑋), (𝐵‘𝑋)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ↔ ((𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧))))) |
65 | 54, 64 | mp1i 13 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → (⟨(𝐶 +o 𝑋), (𝐵‘𝑋)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ↔ ((𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 ((𝐶 +o 𝑋) = (𝐶 +o 𝑧) ∧ (𝐵‘𝑋) = (𝐵‘𝑧))))) |
66 | 40, 51, 65 | mpbir2and 710 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ⟨(𝐶 +o 𝑋), (𝐵‘𝑋)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) |
67 | | fnopfvb 6946 |
. . . 4
⊢
(({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} Fn ((𝐶 +o 𝐷) ∖ 𝐶) ∧ (𝐶 +o 𝑋) ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}‘(𝐶 +o 𝑋)) = (𝐵‘𝑋) ↔ ⟨(𝐶 +o 𝑋), (𝐵‘𝑋)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
68 | 15, 40, 67 | syl2anc 583 |
. . 3
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → (({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}‘(𝐶 +o 𝑋)) = (𝐵‘𝑋) ↔ ⟨(𝐶 +o 𝑋), (𝐵‘𝑋)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
69 | 66, 68 | mpbird 256 |
. 2
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}‘(𝐶 +o 𝑋)) = (𝐵‘𝑋)) |
70 | 4, 41, 69 | 3eqtrd 2775 |
1
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o 𝑋)) = (𝐵‘𝑋)) |