![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsssuc | Structured version Visualization version GIF version |
Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
onsssuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6396 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
2 | ordsssuc 6475 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ⊆ wss 3963 Ord word 6385 Oncon0 6386 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 |
This theorem is referenced by: ordsssuc2 6477 onmindif 6478 tfindsg 7882 dfom2 7889 findsg 7920 ondif2 8539 oeeui 8639 cantnflem1 9727 rankr1bg 9841 rankr1c 9859 cofsmo 10307 cfsmolem 10308 cfcof 10312 fin1a2lem9 10446 alephreg 10620 winainflem 10731 n0sbday 28369 pw2bday 28433 zs12bday 28439 onsuct0 36424 onint1 36432 onintunirab 43216 cantnfresb 43314 oaun3lem4 43367 |
Copyright terms: Public domain | W3C validator |