MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsssuc Structured version   Visualization version   GIF version

Theorem onsssuc 6353
Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsssuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem onsssuc
StepHypRef Expression
1 eloni 6276 . 2 (𝐵 ∈ On → Ord 𝐵)
2 ordsssuc 6352 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
31, 2sylan2 593 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wss 3887  Ord word 6265  Oncon0 6266  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by:  ordsssuc2  6354  onmindif  6355  tfindsg  7707  dfom2  7714  findsg  7746  ondif2  8332  oeeui  8433  cantnflem1  9447  rankr1bg  9561  rankr1c  9579  cofsmo  10025  cfsmolem  10026  cfcof  10030  fin1a2lem9  10164  alephreg  10338  winainflem  10449  onsuct0  34630  onint1  34638
  Copyright terms: Public domain W3C validator