| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsssuc | Structured version Visualization version GIF version | ||
| Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.) |
| Ref | Expression |
|---|---|
| onsssuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6345 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 2 | ordsssuc 6426 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 Oncon0 6335 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 |
| This theorem is referenced by: ordsssuc2 6428 onmindif 6429 tfindsg 7840 dfom2 7847 findsg 7876 ondif2 8469 oeeui 8569 cantnflem1 9649 rankr1bg 9763 rankr1c 9781 cofsmo 10229 cfsmolem 10230 cfcof 10234 fin1a2lem9 10368 alephreg 10542 winainflem 10653 n0sbday 28251 zs12bday 28350 onsuct0 36436 onint1 36444 onintunirab 43223 cantnfresb 43320 oaun3lem4 43373 |
| Copyright terms: Public domain | W3C validator |