MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsssuc Structured version   Visualization version   GIF version

Theorem onsssuc 6424
Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsssuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))

Proof of Theorem onsssuc
StepHypRef Expression
1 eloni 6342 . 2 (𝐵 ∈ On → Ord 𝐵)
2 ordsssuc 6423 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
31, 2sylan2 593 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3914  Ord word 6331  Oncon0 6332  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-suc 6338
This theorem is referenced by:  ordsssuc2  6425  onmindif  6426  tfindsg  7837  dfom2  7844  findsg  7873  ondif2  8466  oeeui  8566  cantnflem1  9642  rankr1bg  9756  rankr1c  9774  cofsmo  10222  cfsmolem  10223  cfcof  10227  fin1a2lem9  10361  alephreg  10535  winainflem  10646  n0sbday  28244  zs12bday  28343  onsuct0  36429  onint1  36437  onintunirab  43216  cantnfresb  43313  oaun3lem4  43366
  Copyright terms: Public domain W3C validator