| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsssuc | Structured version Visualization version GIF version | ||
| Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.) |
| Ref | Expression |
|---|---|
| onsssuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6317 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 2 | ordsssuc 6398 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 Ord word 6306 Oncon0 6307 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-suc 6313 |
| This theorem is referenced by: ordsssuc2 6400 onmindif 6401 tfindsg 7794 dfom2 7801 findsg 7830 ondif2 8420 oeeui 8520 cantnflem1 9585 rankr1bg 9699 rankr1c 9717 cofsmo 10163 cfsmolem 10164 cfcof 10168 fin1a2lem9 10302 alephreg 10476 winainflem 10587 n0sbday 28249 zs12bday 28361 fineqvnttrclselem2 35081 onsuct0 36425 onint1 36433 onintunirab 43210 cantnfresb 43307 oaun3lem4 43360 |
| Copyright terms: Public domain | W3C validator |