| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsssuc | Structured version Visualization version GIF version | ||
| Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.) |
| Ref | Expression |
|---|---|
| onsssuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6316 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 2 | ordsssuc 6397 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 Ord word 6305 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: ordsssuc2 6399 onmindif 6400 tfindsg 7791 dfom2 7798 findsg 7827 ondif2 8417 oeeui 8517 cantnflem1 9579 rankr1bg 9696 rankr1c 9714 cofsmo 10160 cfsmolem 10161 cfcof 10165 fin1a2lem9 10299 alephreg 10473 winainflem 10584 n0sbday 28280 zs12bday 28394 fineqvnttrclselem2 35142 onsuct0 36485 onint1 36493 onintunirab 43330 cantnfresb 43427 oaun3lem4 43480 |
| Copyright terms: Public domain | W3C validator |