Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op1std | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1std | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6677 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = (1st ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op1st 7725 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
5 | 1, 4 | eqtrdi 2790 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3399 〈cop 4523 ‘cfv 6340 1st c1st 7715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-iota 6298 df-fun 6342 df-fv 6348 df-1st 7717 |
This theorem is referenced by: 1st2val 7745 xp1st 7749 sbcopeq1a 7776 csbopeq1a 7777 eloprabi 7789 mpomptsx 7790 dmmpossx 7792 fmpox 7793 ovmptss 7817 fmpoco 7819 df1st2 7822 fsplit 7841 fsplitOLD 7842 frxp 7849 xporderlem 7850 fnwelem 7854 fimaproj 7858 xpf1o 8732 mapunen 8739 xpwdomg 9125 hsmexlem2 9930 fsumcom2 15225 fprodcom2 15433 qredeu 16102 isfuncd 17243 cofucl 17266 funcres2b 17275 funcpropd 17278 xpcco1st 17553 xpccatid 17557 1stf1 17561 2ndf1 17564 1stfcl 17566 prf1 17569 prfcl 17572 prf1st 17573 prf2nd 17574 evlf1 17589 evlfcl 17591 curf1fval 17593 curf11 17595 curf1cl 17597 curfcl 17601 hof1fval 17622 txbas 22321 cnmpt1st 22422 txhmeo 22557 ptuncnv 22561 ptunhmeo 22562 xpstopnlem1 22563 xkohmeo 22569 prdstmdd 22878 ucnimalem 23035 fmucndlem 23046 fsum2cn 23626 ovoliunlem1 24257 lgsquadlem1 26119 lgsquadlem2 26120 2sqreuop 26201 2sqreuopnn 26202 2sqreuoplt 26203 2sqreuopltb 26204 2sqreuopnnlt 26205 2sqreuopnnltb 26206 clwlkclwwlkfolem 27947 wlkl0 28307 gsumhashmul 30896 eulerpartlemgs2 31920 hgt750lemb 32209 cvmliftlem15 32834 satfv1 32899 satfdmlem 32904 fmlasuc 32922 msubty 33063 msubco 33067 msubvrs 33096 ot21std 33257 ot22ndd 33258 xpord2lem 33405 naddcllem 33477 filnetlem4 34216 finixpnum 35408 poimirlem4 35427 poimirlem15 35438 poimirlem20 35443 poimirlem26 35449 poimirlem28 35451 heicant 35458 dicelvalN 38838 rmxypairf1o 40328 unxpwdom3 40515 fgraphxp 40631 elcnvlem 40777 dvnprodlem2 43053 etransclem46 43386 ovnsubaddlem1 43673 dmmpossx2 45236 2arymaptf 45562 rrx2plordisom 45633 |
Copyright terms: Public domain | W3C validator |