Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op1std | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1std | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6804 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = (1st ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op1st 7871 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
5 | 1, 4 | eqtrdi 2792 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 〈cop 4571 ‘cfv 6458 1st c1st 7861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-1st 7863 |
This theorem is referenced by: 1st2val 7891 xp1st 7895 sbcopeq1a 7922 csbopeq1a 7923 eloprabi 7935 mpomptsx 7936 dmmpossx 7938 fmpox 7939 ovmptss 7965 fmpoco 7967 df1st2 7970 fsplit 7989 frxp 7998 xporderlem 7999 fnwelem 8003 fimaproj 8007 xpf1o 8964 mapunen 8971 xpwdomg 9388 hsmexlem2 10229 fsumcom2 15531 fprodcom2 15739 qredeu 16408 isfuncd 17625 cofucl 17648 funcres2b 17657 funcpropd 17661 xpcco1st 17946 xpccatid 17950 1stf1 17954 2ndf1 17957 1stfcl 17959 prf1 17962 prfcl 17965 prf1st 17966 prf2nd 17967 evlf1 17983 evlfcl 17985 curf1fval 17987 curf11 17989 curf1cl 17991 curfcl 17995 hof1fval 18016 txbas 22763 cnmpt1st 22864 txhmeo 22999 ptuncnv 23003 ptunhmeo 23004 xpstopnlem1 23005 xkohmeo 23011 prdstmdd 23320 ucnimalem 23477 fmucndlem 23488 fsum2cn 24079 ovoliunlem1 24711 lgsquadlem1 26573 lgsquadlem2 26574 2sqreuop 26655 2sqreuopnn 26656 2sqreuoplt 26657 2sqreuopltb 26658 2sqreuopnnlt 26659 2sqreuopnnltb 26660 clwlkclwwlkfolem 28416 wlkl0 28776 gsumhashmul 31361 eulerpartlemgs2 32392 hgt750lemb 32681 cvmliftlem15 33305 satfv1 33370 satfdmlem 33375 fmlasuc 33393 msubty 33534 msubco 33538 msubvrs 33567 ot21std 33725 ot22ndd 33726 xpord2lem 33834 naddcllem 33876 filnetlem4 34615 finixpnum 35806 poimirlem4 35825 poimirlem15 35836 poimirlem20 35841 poimirlem26 35847 poimirlem28 35849 heicant 35856 dicelvalN 39234 rmxypairf1o 40771 unxpwdom3 40958 fgraphxp 41074 elcnvlem 41247 dvnprodlem2 43537 etransclem46 43870 ovnsubaddlem1 44158 dmmpossx2 45730 2arymaptf 46056 rrx2plordisom 46127 funcf2lem 46357 |
Copyright terms: Public domain | W3C validator |