Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op1std | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1std | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = (1st ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op1st 7825 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
5 | 1, 4 | eqtrdi 2795 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cop 4572 ‘cfv 6430 1st c1st 7815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-1st 7817 |
This theorem is referenced by: 1st2val 7845 xp1st 7849 sbcopeq1a 7876 csbopeq1a 7877 eloprabi 7889 mpomptsx 7890 dmmpossx 7892 fmpox 7893 ovmptss 7917 fmpoco 7919 df1st2 7922 fsplit 7941 fsplitOLD 7942 frxp 7951 xporderlem 7952 fnwelem 7956 fimaproj 7960 xpf1o 8891 mapunen 8898 xpwdomg 9305 hsmexlem2 10167 fsumcom2 15467 fprodcom2 15675 qredeu 16344 isfuncd 17561 cofucl 17584 funcres2b 17593 funcpropd 17597 xpcco1st 17882 xpccatid 17886 1stf1 17890 2ndf1 17893 1stfcl 17895 prf1 17898 prfcl 17901 prf1st 17902 prf2nd 17903 evlf1 17919 evlfcl 17921 curf1fval 17923 curf11 17925 curf1cl 17927 curfcl 17931 hof1fval 17952 txbas 22699 cnmpt1st 22800 txhmeo 22935 ptuncnv 22939 ptunhmeo 22940 xpstopnlem1 22941 xkohmeo 22947 prdstmdd 23256 ucnimalem 23413 fmucndlem 23424 fsum2cn 24015 ovoliunlem1 24647 lgsquadlem1 26509 lgsquadlem2 26510 2sqreuop 26591 2sqreuopnn 26592 2sqreuoplt 26593 2sqreuopltb 26594 2sqreuopnnlt 26595 2sqreuopnnltb 26596 clwlkclwwlkfolem 28350 wlkl0 28710 gsumhashmul 31295 eulerpartlemgs2 32326 hgt750lemb 32615 cvmliftlem15 33239 satfv1 33304 satfdmlem 33309 fmlasuc 33327 msubty 33468 msubco 33472 msubvrs 33501 ot21std 33659 ot22ndd 33660 xpord2lem 33768 naddcllem 33810 filnetlem4 34549 finixpnum 35741 poimirlem4 35760 poimirlem15 35771 poimirlem20 35776 poimirlem26 35782 poimirlem28 35784 heicant 35791 dicelvalN 39171 rmxypairf1o 40713 unxpwdom3 40900 fgraphxp 41016 elcnvlem 41162 dvnprodlem2 43442 etransclem46 43775 ovnsubaddlem1 44062 dmmpossx2 45624 2arymaptf 45950 rrx2plordisom 46021 funcf2lem 46251 |
Copyright terms: Public domain | W3C validator |