| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1std | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| op1st.1 | ⊢ 𝐴 ∈ V |
| op1st.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1std | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6906 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = (1st ‘〈𝐴, 𝐵〉)) | |
| 2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | op1st 8022 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
| 5 | 1, 4 | eqtrdi 2793 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 〈cop 4632 ‘cfv 6561 1st c1st 8012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fv 6569 df-1st 8014 |
| This theorem is referenced by: 1st2val 8042 xp1st 8046 sbcopeq1a 8074 csbopeq1a 8075 eloprabi 8088 mpomptsx 8089 dmmpossx 8091 fmpox 8092 ovmptss 8118 fmpoco 8120 df1st2 8123 fsplit 8142 frxp 8151 xporderlem 8152 fnwelem 8156 fimaproj 8160 xpord2lem 8167 naddcllem 8714 xpf1o 9179 mapunen 9186 xpwdomg 9625 hsmexlem2 10467 fsumcom2 15810 fprodcom2 16020 qredeu 16695 isfuncd 17910 cofucl 17933 funcres2b 17942 funcpropd 17947 xpcco1st 18229 xpccatid 18233 1stf1 18237 2ndf1 18240 1stfcl 18242 prf1 18245 prfcl 18248 prf1st 18249 prf2nd 18250 evlf1 18265 evlfcl 18267 curf1fval 18269 curf11 18271 curf1cl 18273 curfcl 18277 hof1fval 18298 txbas 23575 cnmpt1st 23676 txhmeo 23811 ptuncnv 23815 ptunhmeo 23816 xpstopnlem1 23817 xkohmeo 23823 prdstmdd 24132 ucnimalem 24289 fmucndlem 24300 fsum2cn 24895 ovoliunlem1 25537 lgsquadlem1 27424 lgsquadlem2 27425 2sqreuop 27506 2sqreuopnn 27507 2sqreuoplt 27508 2sqreuopltb 27509 2sqreuopnnlt 27510 2sqreuopnnltb 27511 clwlkclwwlkfolem 30026 wlkl0 30386 gsumhashmul 33064 gsumwrd2dccatlem 33069 gsumwrd2dccat 33070 elrgspnlem2 33247 elrgspnsubrunlem2 33252 eulerpartlemgs2 34382 hgt750lemb 34671 cvmliftlem15 35303 satfv1 35368 satfdmlem 35373 fmlasuc 35391 msubty 35532 msubco 35536 msubvrs 35565 filnetlem4 36382 finixpnum 37612 poimirlem4 37631 poimirlem15 37642 poimirlem20 37647 poimirlem26 37653 poimirlem28 37655 heicant 37662 dicelvalN 41180 aks6d1c2p1 42119 aks6d1c3 42124 aks6d1c4 42125 aks6d1c6lem2 42172 aks6d1c6lem4 42174 aks6d1c7lem1 42181 fmpocos 42275 rmxypairf1o 42923 unxpwdom3 43107 fgraphxp 43216 elcnvlem 43614 dvnprodlem2 45962 etransclem46 46295 ovnsubaddlem1 46585 gpgvtxedg0 48021 gpgvtxedg1 48022 gpgcubic 48035 gpg5nbgr3star 48037 dmmpossx2 48253 2arymaptf 48573 rrx2plordisom 48644 funcf2lem 48914 tposcurf1 48999 |
| Copyright terms: Public domain | W3C validator |