![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1std | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
op1st.1 | ⊢ 𝐴 ∈ V |
op1st.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1std | ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6448 | . 2 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = (1st ‘〈𝐴, 𝐵〉)) | |
2 | op1st.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | op1st.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | op1st 7455 | . 2 ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 |
5 | 1, 4 | syl6eq 2830 | 1 ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 Vcvv 3398 〈cop 4404 ‘cfv 6137 1st c1st 7445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-iota 6101 df-fun 6139 df-fv 6145 df-1st 7447 |
This theorem is referenced by: 1st2val 7475 xp1st 7479 sbcopeq1a 7501 csbopeq1a 7502 eloprabi 7514 mpt2mptsx 7515 dmmpt2ssx 7517 fmpt2x 7518 ovmptss 7541 fmpt2co 7543 df1st2 7546 fsplit 7565 frxp 7570 xporderlem 7571 fnwelem 7575 xpf1o 8412 mapunen 8419 xpwdomg 8781 hsmexlem2 9586 fsumcom2 14919 fprodcom2 15126 qredeu 15787 isfuncd 16921 cofucl 16944 funcres2b 16953 funcpropd 16956 xpcco1st 17221 xpccatid 17225 1stf1 17229 2ndf1 17232 1stfcl 17234 prf1 17237 prfcl 17240 prf1st 17241 prf2nd 17242 evlf1 17257 evlfcl 17259 curf1fval 17261 curf11 17263 curf1cl 17265 curfcl 17269 hof1fval 17290 txbas 21790 cnmpt1st 21891 txhmeo 22026 ptuncnv 22030 ptunhmeo 22031 xpstopnlem1 22032 xkohmeo 22038 prdstmdd 22346 ucnimalem 22503 fmucndlem 22514 fsum2cn 23093 ovoliunlem1 23717 lgsquadlem1 25568 lgsquadlem2 25569 clwlkclwwlkfolem 27408 wlkl0 27812 fimaproj 30506 eulerpartlemgs2 31048 hgt750lemb 31344 cvmliftlem15 31887 msubty 32031 msubco 32035 msubvrs 32064 filnetlem4 32972 finixpnum 34028 poimirlem4 34048 poimirlem15 34059 poimirlem20 34064 poimirlem26 34070 poimirlem28 34072 heicant 34079 dicelvalN 37341 rmxypairf1o 38449 unxpwdom3 38638 fgraphxp 38762 elcnvlem 38878 dvnprodlem2 41104 etransclem46 41438 ovnsubaddlem1 41725 dmmpt2ssx2 43144 rrx2plordisom 43473 |
Copyright terms: Public domain | W3C validator |