Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ot22ndd Structured version   Visualization version   GIF version

Theorem ot22ndd 33681
Description: Extract the second member of an ordered triple. Deduction version. (Contributed by Scott Fenton, 21-Aug-2024.)
Hypotheses
Ref Expression
ot21st.1 𝐴 ∈ V
ot21st.2 𝐵 ∈ V
ot21st.3 𝐶 ∈ V
Assertion
Ref Expression
ot22ndd (𝑋 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (2nd ‘(1st𝑋)) = 𝐵)

Proof of Theorem ot22ndd
StepHypRef Expression
1 opex 5379 . . . 4 𝐴, 𝐵⟩ ∈ V
2 ot21st.3 . . . 4 𝐶 ∈ V
31, 2op1std 7841 . . 3 (𝑋 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (1st𝑋) = ⟨𝐴, 𝐵⟩)
43fveq2d 6778 . 2 (𝑋 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (2nd ‘(1st𝑋)) = (2nd ‘⟨𝐴, 𝐵⟩))
5 ot21st.1 . . 3 𝐴 ∈ V
6 ot21st.2 . . 3 𝐵 ∈ V
75, 6op2nd 7840 . 2 (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵
84, 7eqtrdi 2794 1 (𝑋 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (2nd ‘(1st𝑋)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  sbcoteq1a  33687  xpord3lem  33795
  Copyright terms: Public domain W3C validator