Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1234qr Structured version   Visualization version   GIF version

Theorem elpell1234qr 42832
Description: Membership in the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
elpell1234qr (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))))
Distinct variable groups:   𝑧,𝑤,𝐷   𝑧,𝐴,𝑤

Proof of Theorem elpell1234qr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pell1234qrval 42831 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
21eleq2d 2815 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ 𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}))
3 eqeq1 2734 . . . . 5 (𝑎 = 𝐴 → (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ↔ 𝐴 = (𝑧 + ((√‘𝐷) · 𝑤))))
43anbi1d 631 . . . 4 (𝑎 = 𝐴 → ((𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
542rexbidv 3203 . . 3 (𝑎 = 𝐴 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
65elrab 3661 . 2 (𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
72, 6bitrdi 287 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  cdif 3913  cfv 6513  (class class class)co 7389  cr 11073  1c1 11075   + caddc 11077   · cmul 11079  cmin 11411  cn 12187  2c2 12242  cz 12535  cexp 14032  csqrt 15205  NNcsquarenn 42817  Pell1234QRcpell1234qr 42819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-cnex 11130  ax-resscn 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-pell1234qr 42825
This theorem is referenced by:  pell1234qrre  42833  pell1234qrne0  42834  pell1234qrreccl  42835  pell1234qrmulcl  42836  pell14qrss1234  42837  pell1234qrdich  42842
  Copyright terms: Public domain W3C validator