Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1234qr Structured version   Visualization version   GIF version

Theorem elpell1234qr 40668
Description: Membership in the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
elpell1234qr (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))))
Distinct variable groups:   𝑧,𝑤,𝐷   𝑧,𝐴,𝑤

Proof of Theorem elpell1234qr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pell1234qrval 40667 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
21eleq2d 2826 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ 𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}))
3 eqeq1 2744 . . . . 5 (𝑎 = 𝐴 → (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ↔ 𝐴 = (𝑧 + ((√‘𝐷) · 𝑤))))
43anbi1d 630 . . . 4 (𝑎 = 𝐴 → ((𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
542rexbidv 3231 . . 3 (𝑎 = 𝐴 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
65elrab 3626 . 2 (𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
72, 6bitrdi 287 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wrex 3067  {crab 3070  cdif 3889  cfv 6431  (class class class)co 7269  cr 10869  1c1 10871   + caddc 10873   · cmul 10875  cmin 11203  cn 11971  2c2 12026  cz 12317  cexp 13778  csqrt 14940  NNcsquarenn 40653  Pell1234QRcpell1234qr 40655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-cnex 10926  ax-resscn 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6389  df-fun 6433  df-fv 6439  df-ov 7272  df-pell1234qr 40661
This theorem is referenced by:  pell1234qrre  40669  pell1234qrne0  40670  pell1234qrreccl  40671  pell1234qrmulcl  40672  pell14qrss1234  40673  pell1234qrdich  40678
  Copyright terms: Public domain W3C validator