Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgindlem Structured version   Visualization version   GIF version

Theorem pgindlem 47760
Description: Lemma for pgind 47762. (Contributed by Emmett Weisz, 27-May-2024.) (New usage is discouraged.)
Assertion
Ref Expression
pgindlem (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑧)

Proof of Theorem pgindlem
StepHypRef Expression
1 xp1st 8007 . . 3 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st𝑥) ∈ 𝒫 𝑧)
21elpwid 4612 . 2 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st𝑥) ⊆ 𝑧)
3 xp2nd 8008 . . 3 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd𝑥) ∈ 𝒫 𝑧)
43elpwid 4612 . 2 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd𝑥) ⊆ 𝑧)
52, 4unssd 4187 1 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cun 3947  wss 3949  𝒫 cpw 4603   × cxp 5675  cfv 6544  1st c1st 7973  2nd c2nd 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-1st 7975  df-2nd 7976
This theorem is referenced by:  pgindnf  47761
  Copyright terms: Public domain W3C validator