![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pgindlem | Structured version Visualization version GIF version |
Description: Lemma for pgind 47762. (Contributed by Emmett Weisz, 27-May-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pgindlem | ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st ‘𝑥) ∪ (2nd ‘𝑥)) ⊆ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 8007 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st ‘𝑥) ∈ 𝒫 𝑧) | |
2 | 1 | elpwid 4612 | . 2 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st ‘𝑥) ⊆ 𝑧) |
3 | xp2nd 8008 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd ‘𝑥) ∈ 𝒫 𝑧) | |
4 | 3 | elpwid 4612 | . 2 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd ‘𝑥) ⊆ 𝑧) |
5 | 2, 4 | unssd 4187 | 1 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st ‘𝑥) ∪ (2nd ‘𝑥)) ⊆ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∪ cun 3947 ⊆ wss 3949 𝒫 cpw 4603 × cxp 5675 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: pgindnf 47761 |
Copyright terms: Public domain | W3C validator |