![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pgindlem | Structured version Visualization version GIF version |
Description: Lemma for pgind 48244. (Contributed by Emmett Weisz, 27-May-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pgindlem | ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st ‘𝑥) ∪ (2nd ‘𝑥)) ⊆ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 8033 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st ‘𝑥) ∈ 𝒫 𝑧) | |
2 | 1 | elpwid 4615 | . 2 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st ‘𝑥) ⊆ 𝑧) |
3 | xp2nd 8034 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd ‘𝑥) ∈ 𝒫 𝑧) | |
4 | 3 | elpwid 4615 | . 2 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd ‘𝑥) ⊆ 𝑧) |
5 | 2, 4 | unssd 4188 | 1 ⊢ (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st ‘𝑥) ∪ (2nd ‘𝑥)) ⊆ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∪ cun 3947 ⊆ wss 3949 𝒫 cpw 4606 × cxp 5680 ‘cfv 6553 1st c1st 7999 2nd c2nd 8000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fv 6561 df-1st 8001 df-2nd 8002 |
This theorem is referenced by: pgindnf 48243 |
Copyright terms: Public domain | W3C validator |