Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgindlem Structured version   Visualization version   GIF version

Theorem pgindlem 49747
Description: Lemma for pgind 49749. (Contributed by Emmett Weisz, 27-May-2024.) (New usage is discouraged.)
Assertion
Ref Expression
pgindlem (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑧)

Proof of Theorem pgindlem
StepHypRef Expression
1 xp1st 7948 . . 3 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st𝑥) ∈ 𝒫 𝑧)
21elpwid 4554 . 2 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (1st𝑥) ⊆ 𝑧)
3 xp2nd 7949 . . 3 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd𝑥) ∈ 𝒫 𝑧)
43elpwid 4554 . 2 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → (2nd𝑥) ⊆ 𝑧)
52, 4unssd 4137 1 (𝑥 ∈ (𝒫 𝑧 × 𝒫 𝑧) → ((1st𝑥) ∪ (2nd𝑥)) ⊆ 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cun 3895  wss 3897  𝒫 cpw 4545   × cxp 5609  cfv 6476  1st c1st 7914  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fv 6484  df-1st 7916  df-2nd 7917
This theorem is referenced by:  pgindnf  49748
  Copyright terms: Public domain W3C validator