| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phival | Structured version Visualization version GIF version | ||
| Description: Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| phival | ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
| 2 | oveq2 7354 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑥 gcd 𝑛) = (𝑥 gcd 𝑁)) | |
| 3 | 2 | eqeq1d 2733 | . . . 4 ⊢ (𝑛 = 𝑁 → ((𝑥 gcd 𝑛) = 1 ↔ (𝑥 gcd 𝑁) = 1)) |
| 4 | 1, 3 | rabeqbidv 3413 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1} = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
| 5 | 4 | fveq2d 6826 | . 2 ⊢ (𝑛 = 𝑁 → (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| 6 | df-phi 16677 | . 2 ⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) | |
| 7 | fvex 6835 | . 2 ⊢ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6929 | 1 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ‘cfv 6481 (class class class)co 7346 1c1 11007 ℕcn 12125 ...cfz 13407 ♯chash 14237 gcd cgcd 16405 ϕcphi 16675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-phi 16677 |
| This theorem is referenced by: phicl2 16679 phibnd 16682 dfphi2 16685 phiprmpw 16687 |
| Copyright terms: Public domain | W3C validator |