MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phival Structured version   Visualization version   GIF version

Theorem phival 16816
Description: Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phival (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phival
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7458 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
2 oveq2 7458 . . . . 5 (𝑛 = 𝑁 → (𝑥 gcd 𝑛) = (𝑥 gcd 𝑁))
32eqeq1d 2742 . . . 4 (𝑛 = 𝑁 → ((𝑥 gcd 𝑛) = 1 ↔ (𝑥 gcd 𝑁) = 1))
41, 3rabeqbidv 3462 . . 3 (𝑛 = 𝑁 → {𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1} = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
54fveq2d 6926 . 2 (𝑛 = 𝑁 → (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
6 df-phi 16815 . 2 ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
7 fvex 6935 . 2 (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ V
85, 6, 7fvmpt 7031 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  cfv 6575  (class class class)co 7450  1c1 11187  cn 12295  ...cfz 13569  chash 14381   gcd cgcd 16542  ϕcphi 16813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453  df-phi 16815
This theorem is referenced by:  phicl2  16817  phibnd  16820  dfphi2  16823  phiprmpw  16825
  Copyright terms: Public domain W3C validator