MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phival Structured version   Visualization version   GIF version

Theorem phival 16468
Description: Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phival (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phival
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
2 oveq2 7283 . . . . 5 (𝑛 = 𝑁 → (𝑥 gcd 𝑛) = (𝑥 gcd 𝑁))
32eqeq1d 2740 . . . 4 (𝑛 = 𝑁 → ((𝑥 gcd 𝑛) = 1 ↔ (𝑥 gcd 𝑁) = 1))
41, 3rabeqbidv 3420 . . 3 (𝑛 = 𝑁 → {𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1} = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
54fveq2d 6778 . 2 (𝑛 = 𝑁 → (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
6 df-phi 16467 . 2 ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
7 fvex 6787 . 2 (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ V
85, 6, 7fvmpt 6875 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  cfv 6433  (class class class)co 7275  1c1 10872  cn 11973  ...cfz 13239  chash 14044   gcd cgcd 16201  ϕcphi 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-phi 16467
This theorem is referenced by:  phicl2  16469  phibnd  16472  dfphi2  16475  phiprmpw  16477
  Copyright terms: Public domain W3C validator