![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phival | Structured version Visualization version GIF version |
Description: Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phival | ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7446 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | oveq2 7446 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑥 gcd 𝑛) = (𝑥 gcd 𝑁)) | |
3 | 2 | eqeq1d 2739 | . . . 4 ⊢ (𝑛 = 𝑁 → ((𝑥 gcd 𝑛) = 1 ↔ (𝑥 gcd 𝑁) = 1)) |
4 | 1, 3 | rabeqbidv 3455 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1} = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
5 | 4 | fveq2d 6918 | . 2 ⊢ (𝑛 = 𝑁 → (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
6 | df-phi 16809 | . 2 ⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) | |
7 | fvex 6927 | . 2 ⊢ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ V | |
8 | 5, 6, 7 | fvmpt 7023 | 1 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3436 ‘cfv 6569 (class class class)co 7438 1c1 11163 ℕcn 12273 ...cfz 13553 ♯chash 14375 gcd cgcd 16537 ϕcphi 16807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-phi 16809 |
This theorem is referenced by: phicl2 16811 phibnd 16814 dfphi2 16817 phiprmpw 16819 |
Copyright terms: Public domain | W3C validator |