![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phival | Structured version Visualization version GIF version |
Description: Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phival | ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7370 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | oveq2 7370 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑥 gcd 𝑛) = (𝑥 gcd 𝑁)) | |
3 | 2 | eqeq1d 2739 | . . . 4 ⊢ (𝑛 = 𝑁 → ((𝑥 gcd 𝑛) = 1 ↔ (𝑥 gcd 𝑁) = 1)) |
4 | 1, 3 | rabeqbidv 3427 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1} = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
5 | 4 | fveq2d 6851 | . 2 ⊢ (𝑛 = 𝑁 → (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
6 | df-phi 16645 | . 2 ⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) | |
7 | fvex 6860 | . 2 ⊢ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ V | |
8 | 5, 6, 7 | fvmpt 6953 | 1 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3410 ‘cfv 6501 (class class class)co 7362 1c1 11059 ℕcn 12160 ...cfz 13431 ♯chash 14237 gcd cgcd 16381 ϕcphi 16643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6453 df-fun 6503 df-fv 6509 df-ov 7365 df-phi 16645 |
This theorem is referenced by: phicl2 16647 phibnd 16650 dfphi2 16653 phiprmpw 16655 |
Copyright terms: Public domain | W3C validator |